Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Front Oncol ; 12: 877657, 2022.
Article in English | MEDLINE | ID: mdl-35646712

ABSTRACT

Neural infiltration is a critical component of the tumor microenvironment; however, owing to technological limitations, its role in hepatocellular cancer remains obscure. Herein, we obtained the RNA-sequencing data of liver hepatocellular carcinoma (LIHC) from The Cancer Genome Atlas database and performed a series of bioinformatic analyses, including prognosis analysis, pathway enrichment, and immune analysis, using the R software packages, Consensus Cluster Plus and Limma. LIHC could be divided into two subtypes according to the expression of neural-related genes (NRGs); moreover, there are statistic differences in the prognosis, stage, and immune regulation between the two subtypes. The prognostic model showed that high expression of NRGs correlated with a poor survival prognosis (P<0.05). Further, CHRNE, GFRA2, GFRA3, and GRIN2D was significantly correlated with LIHC clinical prognosis, clinical stage, immune infiltration, immune response, and vital signaling pathways. There was nerve-cancer crosstalk in LIHC. A reclassification of LIHC based on NRG expression may prove beneficial to clinical practice. CHRNE, GFRA2, GFRA3, and GRIN2D may serve as potential biomarker for liver cancer prognosis or immune response.

2.
Front Oncol ; 11: 753393, 2021.
Article in English | MEDLINE | ID: mdl-34888238

ABSTRACT

BACKGROUND: Phosphorylated CTD-interacting factor 1 (PCIF1) is identified as the only known methyltransferase of N6,2'-O-dimethyladenosine (m6Am) in mRNA. However, its oncogenic and immunogenic role in cancer research is at an initial stage. METHODS: Herein, we carried out a pan-cancer analysis of PCIF1, with a series of datasets (e.g., TIMER2.0, GEPIA2, cBioPortal). RESULTS: PCIF1 expression was higher in most cancers than normal tissues and was discrepant across pathological stages. Highly expressed PCIF1 was positively correlated with overall survival (OS) or disease-free survival (DFS) of some tumors. PCIF1 expression had a positive correlation with CD4+ T-cell infiltration in kidney renal clear cell carcinoma (KIRC), CD8+ T cells, macrophages, and B cells in thyroid carcinoma (THCA), and immune checkpoint genes (ICGs) in LIHC but a negative correlation with CD4+ T cells, neutrophils, myeloid dendritic cells, and ICGs in THCA. It also affected tumor mutational burden (TMB) and microsatellite instability (MSI) of most tumors. CONCLUSION: PCIF1 expression was correlated with cancer prognosis and immune infiltration, suggesting it to be a potential target for cancer therapy.

3.
Peptides ; 137: 170481, 2021 03.
Article in English | MEDLINE | ID: mdl-33450323

ABSTRACT

OBJECTIVE: The purpose of the experiments in this study was to explore the effect of exenatide on intrauterine adhesions (IUAs) and to elucidate its mechanism to provide new ideas for the clinical treatment of IUAs. METHODS: In this study, an animal model of IUAs was established by double stimulation using mechanical curettage and inflammation. After modeling, the treatment group was injected subcutaneously with three doses of exenatide for two weeks. The model group was injected with sterile ultrapure water, and the sham operation group was treated the same as the normal group, except for the observation of abdominal wound changes. Two weeks later, all mice were sacrificed by cervical dysfunction. The obtained mouse uterine tissue was used for subsequent experimental detection, using HE and Masson staining for histomorphological and pathological analysis; qRT-PCR for the detection of TGF-ß1, α-SMA, and MMP-9 gene expression in uterine tissue; and western blotting analysis of TGF-ß1, α-SMA, and collagen 1 protein expression to verify whether exenatide has a therapeutic effect on IUAs in mice. RESULTS: In the high-dose exenatide treatment group, the endometrial glands significantly increased in size, and the deposition area of collagen fibers in the endometrial tissue was significantly reduced. We observed that the mRNA expression of TGF-ß1 and α-SMA in the endometrial tissue of IUAs mice in this group was significantly reduced, while the expression of MMP-9 was significantly increased. In addition, we found that the protein expression of TGF-ß1, α-SMA, and collagen 1 remarkably decreased after treatment with exenatide. CONCLUSION: Exenatide may reduce the deposition of collagen fibers in the uterus of IUAs mice and promote the proliferation of endometrial glands in mice.


Subject(s)
Actins/genetics , Exenatide/pharmacology , Glucagon-Like Peptide 1/genetics , Tissue Adhesions/drug therapy , Transforming Growth Factor beta1/genetics , Animals , Collagen Type I/genetics , Disease Models, Animal , Endometrium/drug effects , Endometrium/pathology , Female , Gene Expression Regulation/drug effects , Glucagon-Like Peptide 1/pharmacology , Matrix Metalloproteinase 9/genetics , Mice , Tissue Adhesions/genetics , Tissue Adhesions/pathology , Uterus/drug effects , Uterus/pathology
SELECTION OF CITATIONS
SEARCH DETAIL