Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.500
Filter
1.
Article in English | MEDLINE | ID: mdl-38823148

ABSTRACT

The development and optimization of Antibody-Drug Conjugates (ADCs) hinge on enhanced analytical and bioanalytical characterization, particularly in assessing critical quality attributes (CQAs). The ADC's potency is largely determined by the average number of drugs attached to the monoclonal antibody (mAb), known as the drug-to-antibody ratio (DAR). Furthermore, the drug load distribution (DLD) influences the therapeutic window of the ADC, defining the range of dosages effective in treating diseases without causing toxic effects. Among CQAs, DAR and DLD are vital; their control is essential for ensuring manufacturing consistency and product quality. Typically, hydrophobic interaction chromatography (HIC) or reversed-phase liquid chromatography (RPLC) with UV detector have been used to quantitate DAR and DLD in quality control (QC) environment. Recently, Native size-exclusion chromatography-mass spectrometry (nSEC-MS) proves the potential as a platformable quantitative method for characterizing DAR and DLD across various cysteine-linked ADCs in research or early preclinical development. In this work, we established and assessed a streamlined nSEC-MS workflow with a benchtop LC-MS platform, to quantitatively monitor DAR and DLD of different chemotype and drug load level cysteine-linked ADCs. Moreover, to deploy this workflow in QC environment, complete method validation was conducted in three independent laboratories, adhering to the International Council for Harmonization of Technical Requirements for Pharmaceuticals for Human Use (ICH) Q2(R1) guidelines. The results met the predefined analytical target profile (ATP) and performance criteria, encompassing specificity/selectivity, accuracy, precision, linearity, range, quantification/detection limit, and robustness. Finally, the method validation design offers a reference for other nSEC-MS methods that are potentially used to determine the DAR and DLD on cysteine-linker ADCs. To the best of our knowledge, this study is the first reported systematic validation of the nSEC-MS method for detecting DAR and DLD. The results indicated that the co-validated nSEC-MS workflow is suitable for DAR and DLD routine analysis in ADC quality control, release, and stability testing.

2.
Ann Anat ; : 152288, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38823491

ABSTRACT

BACKGROUND: The regenerative capacity of organisms declines throughout evolution, and mammals lack the ability to regenerate limbs after injury. Past approaches to achieving successful restoration through pharmacological intervention, tissue engineering, and cell therapies have faced significant challenges. OBJECTIVES: This review aims to provide an overview of the current understanding of the mechanisms behind animal limb regeneration and the successful translation of these mechanisms for human tissue regeneration. RESULTS: Particular attention was paid to the Mexican axolotl (Ambystoma mexicanum), the only adult tetrapod capable of limb regeneration. We will explore fundamental questions surrounding limb regeneration, such as how amputation initiates regeneration, how the limb knows when to stop and which parts to regenerate, and how these findings can apply to mammalian systems. CONCLUSIONS: Given the urgent need for regenerative therapies to treat conditions like diabetic foot ulcers and trauma survivors, this review provides valuable insights and ideas for researchers, clinicians, and biomedical engineers seeking to facilitate the regeneration process or elicit full regeneration from partial regeneration events.

3.
J Hazard Mater ; 474: 134781, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38824775

ABSTRACT

The concept of bio-inspired gradient hierarchies, in which the well-defined MOF nanocrystals serve as active nanodielectrics to create electroactive shell at poly(lactic acid) (PLA) nanofibers, is introduced to promote the surface activity and electroactivity of PLA nanofibrous membranes (NFMs). The strategy enabled significant refinement of PLA nanofibers during coaxial electrospinning (∼40 % decline of fiber diameter), accompanied by remarkable increase of specific surface area (nearly 1.5 m2/g), porosity (approximately 85 %) and dielectric constants for the bio-inspired gradient PLA (BG-PLA) NFMs. It largely boosted initial electret properties and electrostatic adsorption capability of BG-PLA NFMs, as well as charge regeneration by TENG mechanisms even under high-humidity environment. The BG-PLA NFMs thus featured exceptionally high PM0.3 filtration efficiencies with well-controlled air resistance (94.3 %, 163.4 Pa, 85 L/min), in contrast to the relatively low efficiency of only 80.0 % for normal PLA. During the application evaluation of outdoor air purification, excellent long-term filtering performance was demonstrated for the BG-PLA for up to 4 h (nearly 98.0 %, 53 Pa), whereas normal PLA exhibited a gradually declined filtration efficiency and an increased pressure drop. Moreover, the BG-PLA NFMs of increased electroactivity were ready to generate tribo-output currents as driven by respiratory vibrations, which enabled real-time monitoring of electrophysiological signals. This bio-inspired gradient strategy opens up promising pathways to engender biodegradable nanofibers of high surface activity and electroactivity, which has significant implications for intelligent protective membranes.

4.
ACS Sens ; 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38828988

ABSTRACT

The escalating development and improvement of gas sensing ability in industrial equipment, or "machine olfactory", propels the evolution of gas sensors toward enhanced sensitivity, selectivity, stability, power efficiency, cost-effectiveness, and longevity. Two-dimensional (2D) materials, distinguished by their atomic-thin profile, expansive specific surface area, remarkable mechanical strength, and surface tunability, hold significant potential for addressing the intricate challenges in gas sensing. However, a comprehensive review of 2D materials-based gas sensors for specific industrial applications is absent. This review delves into the recent advances in this field and highlights the potential applications in industrial machine olfaction. The main content encompasses industrial scenario characteristics, fundamental classification, enhancement methods, underlying mechanisms, and diverse gas sensing applications. Additionally, the challenges associated with transitioning 2D material gas sensors from laboratory development to industrialization and commercialization are addressed, and future-looking viewpoints on the evolution of next-generation intelligent gas sensory systems in the industrial sector are prospected.

5.
Nat Commun ; 15(1): 4702, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38830878

ABSTRACT

Magnetoelectric materials, which encompass coupled magnetic and electric polarizabilities within a single phase, hold great promises for magnetic controlled electronic components or electric-field controlled spintronics. However, the realization of ideal magnetoelectric materials remains tough due to the inborn competion between ferroelectricity and magnetism in both levels of symmetry and electronic structure. Herein, we introduce a methodology for constructing single phase paramagnetic ferroelectric molecule [TMCM][FeCl4], which shows low-magnetic-field magnetoelectricity at room temperature. By applying a low magnetic field (≤1 kOe), the halogen Cl‧‧‧Cl distance and the volume of [FeCl4]- anions could be manipulated. This structural change causes a characteristic magnetostriction hysteresis, resulting in a substantial deformation of ~10-4 along the a-axis under an in-plane magnetic field of 2 kOe. The magnetostrictive effect is further qualitatively simulated by density functional theory calculations. Furthermore, this mechanical deformation significantly dampens the ferroelectric polarization by directly influencing the overall dipole configuration. As a result, it induces a remarkable α31 component (~89 mV Oe-1 cm-1) of the magnetoelectric tensor. And the magnetoelectric coupling, characterized by the change of polarization, reaches ~12% under 40 kOe magnetic field. Our results exemplify a design methodology that enables the creation of room-temperature magnetoelectrics by leveraging the potent effects of magnetostriction.

6.
Front Endocrinol (Lausanne) ; 15: 1373794, 2024.
Article in English | MEDLINE | ID: mdl-38689735

ABSTRACT

Phosphaturic mesenchymal tumors (PMT) are rare and distinctive tumors that typically result in paraneoplastic syndrome known as tumor-induced osteomalacia (TIO). We report a case of bilateral osteoporotic femoral neck fracture caused by PMT. PMT was surgically resected, followed by sequential treatment of bilateral femoral neck fractures with total hip arthroplasty (THA). A 49-year-old perimenopausal woman experienced consistent bone pain with limb weakness persisting for over 2 years. Initially, she was diagnosed with early osteonecrosis of the femoral head and received nonsurgical treatment. However, from 2020 to 2022, her pain extended to the bilateral shoulders and knees with increased intensity. She had no positive family history or any other genetic diseases, and her menstrual cycles were regular. Physical examination revealed tenderness at the midpoints of the bilateral groin and restricted bilateral hip range of motion, with grade 3/5 muscle strength in both lower extremities. Laboratory findings revealed moderate anemia (hemoglobin 66 g/L), leukopenia (2.70 × 109/L), neutropenia (1.28 × 109/L), hypophosphatemia (0.36 mmol/L), high alkaline phosphatase activity (308.00 U/L), and normal serum calcium (2.22 mmol/L). After surgery, additional examinations were performed to explore the cause of hypophosphatemic osteomalacia. After definitive diagnosis, the patient underwent tumor resection via T11 laminectomy on August 6, 2022. Six months after the second THA, the patient regained normal gait with satisfactory hip movement function without recurrence of PMT-associated osteomalacia or prosthesis loosening. By providing detailed clinical data and a diagnostic and treatment approach, we aimed to improve the clinical understanding of femoral neck fractures caused by TIO.


Subject(s)
Femoral Neck Fractures , Neoplasms, Connective Tissue , Osteomalacia , Paraneoplastic Syndromes , Humans , Female , Osteomalacia/etiology , Middle Aged , Femoral Neck Fractures/surgery , Femoral Neck Fractures/etiology , Femoral Neck Fractures/complications , Paraneoplastic Syndromes/etiology , Neoplasms, Connective Tissue/etiology , Neoplasms, Connective Tissue/diagnosis , Neoplasms, Connective Tissue/surgery , Hypophosphatemia/etiology , Arthroplasty, Replacement, Hip
7.
Adv Sci (Weinh) ; : e2310292, 2024 May 05.
Article in English | MEDLINE | ID: mdl-38704674

ABSTRACT

The regenerative treatment of infectious vertical bone defects remains difficult and challenging today. Current clinical treatments are limited in their ability to control bacteria and infection, which is unfavorable for new bone formation and calls for a new type of material with excellent osteogenic and antibacterial properties. Here a multifunctional scaffold is synthesized that mimics natural bone nanostructures by incorporating silver nanowires into a hierarchical, intrafibrillar mineralized collagen matrix (IMC/AgNWs), to achieve the therapeutic goals of inhibiting bacterial activity and promoting infectious alveolar bone augmentation in rats and beagle dogs. An appropriate concentration of 0.5 mg mL-1 AgNWs is selected to balance biocompatibility and antibacterial properties. The achieved IMC/AgNWs exhibit a broad spectrum of antimicrobial properties against Gram-negative Porphyromonas gingivalis and Gram-positive Streptococcus mutans. When the IMC/AgNWs are cocultured with periodontal ligament stem cells, it possesses excellent osteoinductive activities under both non-inflammatory and inflammatory conditions. By constructing a rat mandibular infected periodontal defect model, the IMC/AgNWs achieve a near-complete healing through the canonical BMP/Smad signaling. Moreover, the IMC/AgNWs enhance vertical bone height and osseointegration in peri-implantitis in beagle dogs, indicating the clinical translational potential of IMC/AgNWs for infectious vertical bone augmentation.

8.
Eur J Neurol ; : e16322, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38726639

ABSTRACT

BACKGROUND AND PURPOSE: This study aimed to investigate the clinical efficacy and safety of telitacicept in patients with generalized myasthenia gravis (gMG) who tested positive for acetylcholine receptor antibodies or muscle-specific kinase antibodies and were receiving standard-of-care therapy. METHODS: Patients meeting the eligibility criteria were randomly assigned to receive telitacicept subcutaneously once a week for 24 weeks in addition to standard-of-care treatment. The primary efficacy endpoint was the mean change in the quantitative myasthenia gravis (QMG) score from baseline to week 24. Secondary efficacy endpoints included mean change in QMG score from baseline to week 12 and gMG clinical absolute score from baseline to week 24. Additionally, safety, tolerability and pharmacodynamics were assessed. RESULTS: Twenty-nine of the 41 patients screened were randomly selected and enrolled. The mean (± standard deviation [SD]) reduction in QMG score from baseline to week 24 was 7.7 (± 5.34) and 9.6 (± 4.29) in the 160 mg and 240 mg groups, respectively. At week 12, mean reductions in QMG scores for these two groups were 5.8 (± 5.85) and 9.5 (± 5.03), respectively, indicating rapid clinical improvement. Safety analysis revealed no adverse events leading to discontinuation or mortalities. All patients showed consistent reductions in serum immunoglobulin (Ig) A, IgG and IgM levels throughout the study. CONCLUSION: Telitacicept demonstrated safety, good tolerability and reduced clinical severity throughout the study period. Further validation of the clinical efficacy of telitacicept in gMG will be conducted in an upcoming phase 3 clinical trial.

9.
Cancer Biol Med ; 2024 May 10.
Article in English | MEDLINE | ID: mdl-38727001

ABSTRACT

Gastric cancer is among the most frequently occurring cancers and a leading cause of cancer-related deaths globally. Because gastric cancer is highly heterogenous and comprised of different subtypes with distinct molecular and clinical characteristics, the management of gastric cancer calls for better-defined, biomarker-guided, molecular-based treatment strategies. MET is a receptor tyrosine kinase mediating important physiologic processes, such as embryogenesis, tissue regeneration, and wound healing. However, mounting evidence suggests that aberrant MET pathway activation contributes to tumour proliferation and metastasis in multiple cancer types, including gastric cancer, and is associated with poor patient outcomes. As such, MET-targeting therapies are being actively developed and promising progress has been demonstrated, especially with MET tyrosine kinase inhibitors. This review aims to briefly introduce the role of MET alterations in gastric cancer and summarize in detail the current progress of MET tyrosine kinase inhibitors in this disease area with a focus on savolitinib, tepotinib, capmatinib, and crizotinib. Building on current knowledge, this review further discusses existing challenges in MET alterations testing, possible resistance mechanisms to MET inhibitors, and future directions of MET-targeting therapies.

11.
BMC Genomics ; 25(1): 449, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38714914

ABSTRACT

BACKGROUND: Previous studies have shown that protein kinase MoKin1 played an important role in the growth, conidiation, germination and pathogenicity in rice blast fungus, Magnaporthe oryzae. ΔMokin1 mutant showed significant phenotypic defects and significantly reduced pathogenicity. However, the internal mechanism of how MoKin1 affected the development of physiology and biochemistry remained unclear in M. oryzae. RESULT: This study adopted a multi-omics approach to comprehensively analyze MoKin1 function, and the results showed that MoKin1 affected the cellular response to endoplasmic reticulum stress (ER stress). Proteomic analysis revealed that the downregulated proteins in ΔMokin1 mutant were enriched mainly in the response to ER stress triggered by the unfolded protein. Loss of MoKin1 prevented the ER stress signal from reaching the nucleus. Therefore, the phosphorylation of various proteins regulating the transcription of ER stress-related genes and mRNA translation was significantly downregulated. The insensitivity to ER stress led to metabolic disorders, resulting in a significant shortage of carbohydrates and a low energy supply, which also resulted in severe phenotypic defects in ΔMokin1 mutant. Analysis of MoKin1-interacting proteins indicated that MoKin1 really took participate in the response to ER stress. CONCLUSION: Our results showed the important role of protein kinase MoKin1 in regulating cellular response to ER stress, providing a new research direction to reveal the mechanism of MoKin1 affecting pathogenic formation, and to provide theoretical support for the new biological target sites searching and bio-pesticides developing.


Subject(s)
Endoplasmic Reticulum Stress , Fungal Proteins , Oryza , Proteomics , Oryza/microbiology , Oryza/genetics , Fungal Proteins/metabolism , Fungal Proteins/genetics , Plant Diseases/microbiology , Gene Expression Regulation, Fungal , Protein Kinases/metabolism , Protein Kinases/genetics , Mutation , Multiomics , Ascomycota
12.
Mini Rev Med Chem ; 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38716553

ABSTRACT

The intensification of the aging population is often accompanied by an increase in agerelated diseases, which impair the quality of life of the elderly. The characteristic feature of aging is progressive physiological decline, which is the largest cause of human pathology and death worldwide. However, natural aging interacts in exceptionally complex ways within and between organs, but its underlying mechanisms are still poorly understood. Long non-coding RNA (lncRNA) is a type of noncoding RNA that exceeds 200 nucleotides in length and does not possess protein-coding ability. It plays a crucial role in the occurrence and development of diseases. ANRIL, also known as CDKN2B-AS1, is an antisense ncRNA located at the INK4 site. It can play a crucial role in agerelated disease progression by regulating single nucleotide polymorphism, histone modifications, or post-transcriptional modifications (such as RNA stability and microRNA), such as cardiovascular disease, diabetes, tumor, arthritis, and osteoporosis. Therefore, a deeper understanding of the molecular mechanisms of lncRNA ANRIL in age-related diseases will help provide new diagnostic and therapeutic targets for clinical practice.

13.
J Cancer Res Clin Oncol ; 150(5): 272, 2024 May 25.
Article in English | MEDLINE | ID: mdl-38795250

ABSTRACT

PURPOSE: Somatostatin receptor (SSTR)-targeted PET imaging has emerged as a common approach to evaluating those patients with well-differentiated neuroendocrine tumors (NETs). The SSTR reporting and data system (SSTR-RADS) version 1.0 provides a means of categorizing lesions from 1 to 5 according to the likelihood of NET involvement, with SSTR-RADS-3A (soft-tissue) and SSTR-RADS-3B (bone) lesions being those suggestive of but without definitive NET involvement. The goal of the present study was to assess the ability of 68Ga-DOTATATE PET/MR imaging data to predict outcomes for indeterminate SSTR-RADS-3A and 3B lesions. METHODS: NET patients with indeterminate SSTR-RADS-3A or SSTR-RADS-3B lesions who underwent 68Ga-DOTATATE PET/MR imaging from April 2020 through August 2023 were retrospectively evaluated. All patients underwent follow-up through December 2023 (median, 17 months; (3-31 months)), with imaging follow-up or biopsy findings ultimately being used to classify lesions as malignant or benign. Lesion maximum standardized uptake value (SUVmax) along with minimum and mean apparent diffusion coefficient (ADCmin and ADCmean) values were measured and assessed for correlations with outcomes on follow-up. RESULTS: In total, 33 indeterminate SSTR-RADS-3 lesions from 22 patients (19 SSTR-RADS-3A and 14 SSTR-RADS-3B) were identified based upon baseline 68Ga-DOTATATE PET/MR findings. Over the course of follow-up, 16 of these lesions (48.5%) were found to exhibit true NET positivity, including 9 SSTR-RADS-3A and 7 SSTR-RADS-3B lesions. For SSTR-RADS-3A lymph nodes, a diameter larger than 0.7 cm and an ADCmin of 779 × 10-6mm2/s or lower were identified as being more likely to be associated with metastatic lesions. Significant differences in ADCmin and ADCmean were identified when comparing metastatic and non-metastatic SSTR-RADS-3B bone lesions (P < 0.05), with these parameters offering a high predictive ability (AUC = 0.94, AUC = 0.86). CONCLUSION: Both diameter and ADCmin can aid in the accurate identification of the nature of lesions associated with SSTR-RADS-3A lymph nodes, whereas ADCmin and ADCmean values can inform the accurate interpretation of SSTR-RADS-3B bone lesions.


Subject(s)
Neuroendocrine Tumors , Organometallic Compounds , Receptors, Somatostatin , Humans , Neuroendocrine Tumors/diagnostic imaging , Neuroendocrine Tumors/pathology , Male , Female , Middle Aged , Aged , Retrospective Studies , Receptors, Somatostatin/metabolism , Adult , Positron-Emission Tomography/methods , Magnetic Resonance Imaging/methods , Radiopharmaceuticals , Aged, 80 and over , Prognosis
14.
BMC Pediatr ; 24(1): 296, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38702638

ABSTRACT

BACKGROUND: Cough variant asthma (CVA) is one of the most common causes of chronic cough in children worldwide. The diagnosis of CVA in children remains challenging. This study aimed to assess the diagnostic utility of impulse oscillometry (IOS) pulmonary function in children with CVA. METHODS: This study included children aged 4 to 12 years diagnosed with CVA who underwent IOS pulmonary function and bronchodilation (BD) tests. A control group of healthy children was matched. Pre- and post-BD IOS parameters were recorded and presented as mean ± standard deviation or median. Receiver operating characteristic (ROC) curves were plotted, and the area under the curve (AUC) was calculated to evaluate the discriminatory potential of the IOS parameters for diagnosing CVA. RESULTS: A total of 180 patients with CVA and 65 control subjects were included. The baseline IOS parameters in the CVA group, except X5%pred, were significantly greater compared to the control group. After inhalation of salbutamol sulfate, all IOS parameters improved significantly in the CVA group. However, Z5%pred, R5%pred, and R20%pred remained greater in the CVA group compared to the control group. The improvement rates of IOS parameters in the CVA group significantly surpassed those in the control group. The ROC curve results for pre-BD IOS parameters and the improvement rate during the BD test showed that the combinations of pre-Z5%pred+△Z5% and pre-R5%pred+△R5% achieved the highest AUC value of 0.920 and 0.898, respectively. The AUC values of these combined parameters surpassed those of individual ones. CONCLUSIONS: This study highlights that children with CVA exhibit greater IOS parameters compared to healthy children. The changes in IOS parameters during the BD test provided valuable diagnostic information for CVA, and the combination of various parameters can help pediatricians accurately identify CVA in children.


Subject(s)
Asthma , Cough , Oscillometry , Humans , Cough/etiology , Cough/diagnosis , Child , Asthma/diagnosis , Asthma/physiopathology , Male , Female , Oscillometry/methods , Child, Preschool , Case-Control Studies , ROC Curve , Albuterol , Respiratory Function Tests/methods , Bronchodilator Agents , Cough-Variant Asthma
15.
J Appl Lab Med ; 2024 May 07.
Article in English | MEDLINE | ID: mdl-38712812

ABSTRACT

BACKGROUND: Standardizing cerebrospinal fluid (CSF) laboratory protocols will improve the reliability and availability of clinical biomarker testing required for prescription of novel Alzheimer disease (AD) therapies. This study evaluated several preanalytical handling and storage factors common to ß-amyloid1-42 (Aß1-42), ß-amyloid1-40 (Aß1-40), and phosphorylated tau (pTau181) concentrations including storage at different temperatures, extended cap contact, various mixing methods, and multiple freeze-thaw cycles. METHODS: Aß1-42, Aß1-40, and pTau181 concentrations were measured using LUMIPULSE G1200 automated assays. Samples were collected in polypropylene tubes of various volumes. Sample cap-contact was evaluated by storing samples in upright and inverted positions at either 4°C for 1 week or -80°C for 1 month. To assess mixing methods, samples were freeze-thawed and mixed by inversion, vortex, horizontal roller, or unmixed prior to assay sampling. The impact of successive freeze-thaw cycles was assessed through freezing, thawing, and analyzing CSF samples. RESULTS: Short-term storage at 4°C did not affect Aß1-42, Aß1-40, or pTau181 measurements in any tube type. Tube cap contact affected Aß1-42 in 2.5 mL tubes and pTau181 levels in 10 mL tubes. No difference was observed between mixing methods. After 4 freeze-thaw cycles, Aß1-42 significantly decreased but Aß1-40 remained unchanged. Utilizing the Aß1-42/Aß1-40 ratio, Aß1-42 values normalized, maintaining ratio values within ±5% of baseline measurements. CONCLUSIONS: Storage of CSF at 4°C for 1 week or -80°C for 1 month did not significantly affect Aß1-42, Aß1-40, pTau181, or associated ratio measurements. Tube cap-contact impacted pTau181 and pTau181/Aß1-42 values in larger tubes. Mixing methods are equivalent. The Aß1-42/Aß1-40 ratio compensates for freeze-thaw variability up to 4 cycles.

16.
Sci Data ; 11(1): 488, 2024 May 11.
Article in English | MEDLINE | ID: mdl-38734729

ABSTRACT

Domesticated herbivores are an important agricultural resource that play a critical role in global food security, particularly as they can adapt to varied environments, including marginal lands. An understanding of the molecular basis of their biology would contribute to better management and sustainable production. Thus, we conducted transcriptome sequencing of 100 to 105 tissues from two females of each of seven species of herbivore (cattle, sheep, goats, sika deer, horses, donkeys, and rabbits) including two breeds of sheep. The quality of raw and trimmed reads was assessed in terms of base quality, GC content, duplication sequence rate, overrepresented k-mers, and quality score distribution with FastQC. The high-quality filtered RNA-seq raw reads were deposited in a public database which provides approximately 54 billion high-quality paired-end sequencing reads in total, with an average mapping rate of ~93.92%. Transcriptome databases represent valuable resources that can be used to study patterns of gene expression, and pathways that are related to key biological processes, including important economic traits in herbivores.


Subject(s)
Herbivory , Transcriptome , Animals , Cattle/genetics , Female , Rabbits/genetics , Databases, Genetic , Deer/genetics , Equidae/genetics , Goats/genetics , Horses/genetics , Sheep/genetics
17.
Article in English | MEDLINE | ID: mdl-38760535

ABSTRACT

Venous thromboembolism, which is common in cancer patients and accompanies or even precedes malignant tumors, is known as cancer-related thrombosis and is an important cause of cancer- associated death. At present, the exact etiology of the elevated incidence of venous thrombosis in cancer patients remains elusive. Platelets play a crucial role in blood coagulation, which is intimately linked to the development of arterial thrombosis. Additionally, platelets contribute to tumor progression and facilitate immune evasion by tumors. Tumor cells can interact with the coagulation system through various mechanisms, such as producing hemostatic proteins, activating platelets, and directly adhering to normal cells. The relationship between platelets and malignant tumors is also significant. In this review article, we will explore these connections.

18.
Clin Transl Med ; 14(5): e1678, 2024 May.
Article in English | MEDLINE | ID: mdl-38736108

ABSTRACT

BACKGROUND: Cyclin-dependent kinase 12 (CDK12)-deficient prostate cancer defines a subtype of castration-resistant prostate cancer (CRPC) with a poor prognosis. Current therapy, including PARP inhibitors, shows minimal treatment efficacy for this subtype of CRPC, and the underlying mechanism remains elusive. METHODS: Based on bioinformatics analysis, we evaluated the relationship between CDK12 deficiency and prostate cancer patient's prognosis and treatment resistance. Furthermore, we used CRISPR-Cas9 technology and mass spectrometry-based metabolomic profiling to reveal the metabolic characteristics of CDK12-deficient CRPC. To elucidate the specific mechanisms of CDK12 deficiency-mediated CRPC metabolic reprogramming, we utilized cell RNA-seq profiling and other molecular biology techniques, including cellular reactive oxygen species probes, mitochondrial function assays, ChIP-qPCR and RNA stability analyses, to clarify the role of CDK12 in regulating mitochondrial function and its contribution to ferroptosis. Finally, through in vitro drug sensitivity testing and in vivo experiments in mice, we identified the therapeutic effects of the electron transport chain (ETC) inhibitor IACS-010759 on CDK12-deficient CRPC. RESULTS: CDK12-deficient prostate cancers reprogramme cellular energy metabolism to support their aggressive progression. In particular, CDK12 deficiency enhanced the mitochondrial respiratory chain for electronic transfer and ATP synthesis to create a ferroptosis potential in CRPC cells. However, CDK12 deficiency downregulated ACSL4 expression, which counteracts the lipid oxidation stress, leading to the escape of CRPC cells from ferroptosis. Furthermore, targeting the ETC substantially inhibited the proliferation of CDK12-deficient CRPC cells in vitro and in vivo, suggesting a potential new target for the therapy of CDK12-deficient prostate cancer. CONCLUSIONS: Our findings show that energy and lipid metabolism in CDK12-deficient CRPC work together to drive CRPC progression and provide a metabolic insight into the worse prognosis of CDK12-deficient prostate cancer patients. KEY POINTS: CDK12 deficiency promotes castration-resistant prostate cancer (CRPC) progression by reprogramming cellular metabolism. CDK12 deficiency in CRPC leads to a more active mitochondrial electron transport chain (ETC), ensuring efficient cell energy supply. CDK12 phosphorylates RNA Pol II to ensure the transcription of ACSL4 to regulate ferroptosis. Mitochondrial ETC inhibitors exhibit better selectivity for CDK12-deficient CRPC cells, offering a promising new therapeutic approach for this subtype of CRPC patients.


Subject(s)
Cyclin-Dependent Kinases , Ferroptosis , Prostatic Neoplasms, Castration-Resistant , Male , Prostatic Neoplasms, Castration-Resistant/metabolism , Prostatic Neoplasms, Castration-Resistant/drug therapy , Prostatic Neoplasms, Castration-Resistant/genetics , Prostatic Neoplasms, Castration-Resistant/pathology , Ferroptosis/genetics , Humans , Mice , Animals , Cyclin-Dependent Kinases/metabolism , Cyclin-Dependent Kinases/genetics , Disease Progression , Cell Line, Tumor
19.
Sleep Med ; 119: 424-431, 2024 May 18.
Article in English | MEDLINE | ID: mdl-38781665

ABSTRACT

BACKGROUND: This cross-sectional study aimed to examine the prevalence and correlates of social jetlag (SJL) in Chinese adolescents, as well as to test the relationships between SJL and mental health problems. METHODS: A total of 106979 students (Mage = 13.0 ± 1.8 years; Nmale = 58296 [54.5 %]) from Shenzhen, China completed an online survey from May 24th to June 5th, 2022. Information on sociodemographics, lifestyles, sleep characteristics, anxiety symptoms, and depressive symptoms was collected by a self-administered questionnaire. Multivariate and binary logistic regression were adopted for data analysis. RESULTS: 17.8 % of participants experienced SJL ≥ 2 h. To adjust the accumulated sleep debt, sleep-corrected SJL (SJLsc) was calculated and 8.3 % of individuals self-reported SJLsc ≥ 2 h. Both SJL and SJLsc show an increasing trend with age. Risk factors of SJL included females, poor parental marital status, being overweight, physically inactive, smoking, drinking, and having a late chronotype. Moreover, males, having siblings, boarding at school, short sleep duration, experiencing insomnia, and frequent nightmares were significantly associated with an increased risk of SJLsc. After adjusting for all covariates, adolescents with SJLsc ≥ 2 h were more likely to have anxiety symptoms (OR: 1.35, 95 % CI: 1.24-1.48) and depressive symptoms (OR: 1.35, 95 % CI: 1.25-1.46) than those with SJLsc < 1 h. CONCLUSIONS: SJL is common among Chinese school-age adolescents. This study is valuable for the development of prevention and intervention strategies for SJL in adolescents at the population level. Additionally, the strong links between SJLsc and emotional problems underscore the critical significance of addressing SJL as a key aspect of adolescent well-being.

20.
Biomacromolecules ; 2024 May 24.
Article in English | MEDLINE | ID: mdl-38785044

ABSTRACT

The desire for healthy living has created a crucial need for portable flexible health-monitoring devices based on biomaterials. Toward this end, we report a microsphere-structured hydrogel that uses bovine serum albumin (BSA) as a dielectric layer for capacitive pressure sensors. We developed a theoretical model that describes how stacking dielectric layers of spheres affects the performance of capacitive sensors. We also prepared a prototype sensor featuring the unique microsphere structure to create capacitive sensors with high sensitivity (360.91 strain sensitivity), excellent cyclical stability, and a long service life (over 5000 stretching-compression cycles). Furthermore, the design of the hydrogel sensor allows for easy integration into fabrics to create devices such as smart wristbands, which can collect a diverse range of health data. Thus, BSA-hydrogel-based sensors not only provide safe wearable devices but also advance the performance of high-sensitivity capacitive sensors.

SELECTION OF CITATIONS
SEARCH DETAIL
...