Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
Food Res Int ; 190: 114486, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38945556

ABSTRACT

Hebei Province's Huanghua "Mianhua" is a province intangible cultural property made from arid alkaline wheat (AAW). This study aims to assess how different soil conditions affect the volatile organic compounds (VOCs) of "Mianhua" and identify distinct VOCs for land type discrimination. These findings will guide future research on AAW products, enhancing their processing and utilization. 51 VOCs in "Mianhua" from wheat samples grown in arid alkaline land and general land in Huanghua were analyzed by Gas Chromatography-Ion Mobility Spectrometry (GC-IMS). The result of ANOVA, VOC fingerprint, T test, and OPLS-DA revealed VOCs differences based on planting environments. According to multivariate variance contribution rate analysis, most VOCs were more affected by the variety. Land type significantly influenced (E)-2-heptenal (75.3%), Butanol (60.6%), Propyl acetate (60.0%), ethyl pentanoate (45.5%), and ethyl acetate (44.4%). LDA progressively identified Butanol as the characteristic VOC to distinguish "Mianhua" between it made from AAW and general wheat (GW), with a classification accuracy of 75%.


Subject(s)
Gas Chromatography-Mass Spectrometry , Soil , Triticum , Volatile Organic Compounds , Triticum/chemistry , Volatile Organic Compounds/analysis , Soil/chemistry , Ion Mobility Spectrometry/methods , China
2.
Int J Biol Macromol ; 274(Pt 1): 133223, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38897509

ABSTRACT

The coarse texture and difficulty in processing dietary fiber (DF) in cereal bran have become limiting factors for the development of the whole cereal grain (WCG) food industry. To promote the development of the WCG industry, this review comprehensively summarizes the various forms and structures of cereal DF, including key features such as molecular weight, chain structure, and substitution groups. Different modification methods for changing the chemical structure of DF and their effects on the modification methods on physicochemical properties and biological activities of DF are discussed systematically. Furthermore, the review focusses on exploring the interactions between DF and dough components and discusses the effects on the gluten network structure, starch gelatinization and retrogradation, fermentation, glass transition, gelation, and rheological and crystalline characteristics of dough. Additionally, opportunities and challenges regarding the further development of DF for the flour products are also reviewed. The objective of this review is to establish a comprehensive foundation for the precise modification of cereal DF, particularly focusing on its application in dough-related products, and to advance the development and production of WCG products.

3.
Food Chem ; 453: 139598, 2024 Sep 30.
Article in English | MEDLINE | ID: mdl-38754351

ABSTRACT

In this study, dynamic behaviors of proteins and water during fresh noodles processing associated with the quality of fresh noodles were systematically investigated by using wheat near-isogenic lines carrying high-molecular-weight glutenin subunits (HMW-GS) 2 + 12, 3 + 12 or 5 + 10 at the Glu-D1 locus. The results showed that subunits 5 + 10 tend to form a complex gluten network and had a poorly hydrated ability, that prevent the intrusion of external water during cooking; subunits 3 + 12 formed a moderate strength gluten network that generated a medium ability to resist the hydrated and mechanical treatment, which explained the highest water absorption and less cooking loss of cooked noodles; while subunits 2 + 12 formed fragile protein aggregates that had a poor ability to resist mechanical. The findings demonstrated that subunits 3 + 12 provided a suitable gluten network which was crucial for intrusion and hydration of external water thus formed a uniform gluten network and excellent fresh noodle quality.


Subject(s)
Cooking , Glutens , Molecular Weight , Triticum , Water , Glutens/chemistry , Triticum/chemistry , Water/chemistry , Flour/analysis , Plant Proteins/chemistry , Food Handling
4.
Foods ; 13(7)2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38611302

ABSTRACT

Mixing is crucial for dough quality. The gluten content influences water migration in dough development and properties, leading to quality changes in dough-based products. Understanding how the gluten protein content influences water migration during dough development is necessary for dough processing. A compound flour with different gluten protein contents (GPCs, 10-26%, w/w) was used to study the dough farinograph parameters and water migration during dough development. According to the farinograph test of the gluten-starch model dough, the GPC increases the water absorption and the strength of the dough. Water migration was determined via low-field nuclear magnetic resonance (LF-NMR). With the increase in GPC, the gluten protein increases the binding ability of strongly bound water and promotes the transformation of weakly bound water. However, inappropriate GPC (10% and 26%, w/w) results in the release of free water, which is caused by damage to the gluten network according to the microstructure result. Moreover, the changes in proteins' secondary structures are related to the migration of weakly bound water. Therefore, weakly bound water plays an important role in dough development. Overall, these results provide a theoretical basis for the optimization of dough processing.

6.
Sci Rep ; 14(1): 3905, 2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38366079

ABSTRACT

Digital transformation and green innovation are powerful initiatives to achieve carbon peaking, carbon neutrality targets and high-quality economic development. Using a sample of high energy-consuming listed enterprises from 2012 to 2021, a double fixed-effect model is constructed to verify the effect of green innovation on the carbon emission reduction performance of high energy-consuming enterprises, and digital transformation is used as a moderating variable to analyze the inner mechanism of green innovation affecting the carbon emission reduction performance of high energy-consuming enterprises under the effect of digital transformation. The empirical results show that green innovation can significantly improve the carbon emission reduction performance of energy-consuming enterprises, while digital transformation positively moderates the effect of green innovation on the carbon emission reduction performance of energy-consuming enterprises. When considering the industry heterogeneity, the moderation effect of digital transformation is significant in the chemical raw materials and chemical products manufacturing industry and the electricity and heat production and supply industry, but the petroleum processing and coking and nuclear fuel processing industry, the non-metallic mineral products industry, the ferrous metal smelting and rolling processing industry and the non-ferrous metal smelting and rolling processing industry are not yet significantly affected by green innovation and digital transformation. The findings of the study provide empirical evidence to promote the improvement of carbon emission reduction performance of energy-intensive enterprises in China and to achieve the "double carbon" target.

7.
J Food Sci ; 89(2): 1047-1057, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38193206

ABSTRACT

The aim of this study was to clarify the effects of the high-molecular-weight glutenin subunits (HMW-GSs) 1Dx3+1Dy12 (3+12) and 1Dx4+1Dy12 (4+12) at the Glu-D1 locus on gluten and Chinese steamed bread (CSB) quality. The grain protein content and composition, gluten content and gluten index, farinograph properties, and CSB quality were investigated using four wheat near-isogenic lines (NILs) carrying HMW-GSs 1Dx2+1Dy12 (2+12), 3+12, 4+12 and 1Dx5+1Dy10 (5+10), respectively. The unextractable polymeric protein (UPP) and glutenin macropolymer (GMP) content, gluten index, dough development time, stability time, and farinograph quality number of four NILs all ranked as 5+10 > 3+12 > 2+12/4+12, such as the gluten index ranked as 5+10(44.88%) > 3+12(40.07%) > 2+12(37.46%)/4+12(35.85%); however, their contributions to the quality of CSB were ranked as 3+12 > 5+10 > 2+12/4+12, such as the specific volume ranked as 3+12(2.64 mL/g) > 5+10(2.49 mL/g) > 2+12(2.36 mL/g)/4+12(2.35 mL/g), which indicated that a suitable gluten strength (3+12) was crucial to making high-quality CSB. In addition, subunits 4+12 had a similar quality performance to low-quality subunits 2+12. All these findings suggested that, except for the acknowledged high-quality subunits 5+10, the introduction of 3+12 at the Glu-D1 locus is an efficient way for quality improvement of gluten as well as CSB.


Subject(s)
Bread , Triticum , Triticum/chemistry , Glutens/chemistry , China , Molecular Weight
8.
Foods ; 12(16)2023 Aug 08.
Article in English | MEDLINE | ID: mdl-37627991

ABSTRACT

Many varieties of soft wheat in China cannot fully satisfy the requirements of making high-quality cakes due to their undesirable protein properties, which leads to shortages of high-quality soft wheat flour. Therefore, a modification of soft wheat protein is essential for improving the quality of soft wheat and thus improving cake quality. In order to modify the protein properties of soft wheat used for cake production, superheated steam (SS) was used to treat soft wheat grains at 165 °C and 190 °C for 1, 2, 3, 4, and 5 min, respectively, followed by the milling of wheat grains to obtain refined wheat flour. The properties of proteins and cakes were analyzed using refined wheat flour as materials. First, changes in the structures of wheat proteins were analyzed by determining the solubility, molecular weight distribution and secondary structure of proteins in wheat flour. Secondly, changes in the functional properties of proteins were analyzed by determining the foaming properties and emulsifying properties of proteins in wheat flour. Finally, the specific volume and texture of cakes with wheat flour milled from SS-treated wheat were analyzed. At the initial stage of SS treatment, some of the gliadin and glutenin aggregated, and the gluten macro-polymer (GMP) contents increased. This allowed a more stable gluten network to form during dough kneading, leading to an improvement in dough elasticity. In addition, a short time period (1-3 min) of SS treatment improved the emulsifying properties and foaming ability of wheat protein, which helped to improve the specific volume and texture of cakes. Increasing the SS temperature from 165 °C to 190 °C reduced the optimal treatment time needed to improve cake quality from 3 min to 1 min. SS treatment for longer time (>3 min) periods led to severe protein aggregation and a decrease in the foaming ability and emulsifying properties of protein, which led to a deterioration in the cake quality. Thus, SS treatment at 165 °C for 1-3 min and 190 °C for 1 min could be a suitable method of improving the physicochemical properties of soft wheat used to make cakes with high specific volumes and good texture.

9.
Foods ; 12(16)2023 Aug 20.
Article in English | MEDLINE | ID: mdl-37628123

ABSTRACT

Low-molecular-weight glutenin subunits (LMW-GS) account for 40% of the total wheat grain gluten protein fraction, which plays a significant role in the formation of noodle processing quality. The goal of this study was to clarify the effects of the major LMW-GS encoded by Glu-A3 on gluten and Chinese fresh noodle (CFN) quality. Four near-isogenic lines (NILs) were used as materials in this study, respectively carrying alleles Glu-A3a, Glu-A3b, Glu-A3c, and Glu-A3e, against the background of wheat variety Xiaoyan 22. The grain protein and its component contents and the gluten content, gluten index, farinograph properties, cooking quality, and textural quality of CFN were investigated. The results show that the ratios of glutenin to gliadin (Glu/Gli) in the NILs ranked them as Glu-A3b > Glu-A3c/Glu-A3a > Glu-A3e, and the unextractable polymeric protein content (UPP%), gluten index (GI), and farinograph quality in the NILs ranked them as Glu-A3b > Glu-A3c > Glu-A3a/Glu-A3e. Compared to Glu-A3b and Glu-A3a, the NILs carrying alleles Glu-A3c and Glu-A3e had better cooking and texture properties in CFN. All these findings suggest that the introduction of alleles Glu-A3c or Glu-A3e is an efficient method for quality improvement in CFN, which provides an excellent subunit selection for improving CFN quality.

10.
Environ Sci Pollut Res Int ; 30(20): 57882-57897, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36973616

ABSTRACT

The intelligent city pilot policy is a major measure in China to promote urban development from factor driven and investment driven to innovation driven. Intelligent city construction can effectively coordinate specialized production factors and information sharing mechanism, promote digital information technology innovation, promote smart industry cluster, and expand ecological scenarios of clean industry application, so as to reduce carbon emissions. This paper reveals the internal mechanism of intelligent city construction to promote carbon emission reduction. Based on the quasi-natural experiments carried out in three batches of pilot construction of intelligent cities since 2012, the difference-in-difference model (DID) is used to identify its impact on urban carbon emissions. The research results show that the pilot construction of intelligent cities is conducive to reducing carbon emissions, which is still robust under multiple scenarios such as placebo test and endogenous test. Heterogeneity analysis shows that the pilot policies have a more significant carbon emission reduction effect on the Beijing-Tianjin-Hebei urban agglomeration, non-resource-based cities, and non-old industrial bases. After further quantitative analysis of 917 pilot policy texts based on Simhash algorithm, Jieba word segmentation, and word frequency statistics, it is found that intelligent industry policies reduce carbon emissions by driving data elements agglomeration and optimizing industrial structure, while intelligent government and intelligent people's livelihood policies improve energy efficiency and reduce carbon emissions through green technological innovation. Counterfactual tests using machine learning algorithms show that the later the pilot batch, the better the sustainable carbon emission reduction effect of intelligent city pilot policies.


Subject(s)
Algorithms , Carbon , Humans , Cities , Beijing , China , Economic Development
11.
Compr Rev Food Sci Food Saf ; 22(2): 1360-1386, 2023 03.
Article in English | MEDLINE | ID: mdl-36789799

ABSTRACT

The concept of superheated steam (SS) was proposed over a century ago and has been widely studied as a drying method. SS processing of cereals and cereal products has been extensively studied in recent years for its advantages of higher drying rates above the inversion temperature, oxygen-free environment, energy conservation, and environmental protection. This review provides a brief introduction to the history, principles, and classification of SS. The applications of SS processing in the drying, enzymatic inactivation, sterilization, mycotoxin degradation, roasting, and cooking of cereals and cereal products are summarized and discussed. Moreover, the effects of SS processing on the physicochemical properties of cereals and the qualities of cereal foods are reviewed and discussed. The applications of SS for cereal processing and its effects on cereal properties have been extensively studied; however, issues such as the browning of cereal foods, thermal damage of starch, protein denaturation, and nutrition loss have not been comprehensively studied. Therefore, further studies are required to better understand the mechanism of the quality changes caused by SS processing and to expand the fields of application of SS in the cereal processing industry. This review enhances the understanding of SS processing and presents theoretical suggestions for promoting SS processing to improve the safety and quality of cereals and cereal products.


Subject(s)
Edible Grain , Steam , Edible Grain/chemistry , Food Contamination/analysis , Food Microbiology , Cooking
12.
Foods ; 12(23)2023 Dec 04.
Article in English | MEDLINE | ID: mdl-38231864

ABSTRACT

In this study, the effects of frozen storage time, thawing treatments, and their interaction on the rheological properties of non-fermented dough were evaluated. Texture profile analysis (TPA), rheological measurements, including strain/frequency sweep, and creep-recovery measurement were applied to the dough. Compared with unfrozen fresh dough, the frozen storage time (S) and thawing treatment (T) influenced almost all indicators significantly, and their mutual effects (S × T) mainly affected the hardness and springiness. Frozen time was the main factor resulting in the destruction of non-fermented dough during the thawing treatments. Moreover, refrigerator thawing (4 °C) produced a dough with minimal changes in the rheological properties, regardless of the frozen storage time. Meanwhile, microwave thawing resulted in lower G' and lower zero shear viscosity (η0) values, as well as higher maximum creep compliance (Jmax) and hardness values. Moreover, the difference between the three thawing treatments was exacerbated after 30 days of frozen storage. SEM images also showed that long-term frozen storage combined with microwave thawing seriously destroyed the rheological properties, structural stability, and inner microstructure of the dough.

13.
Foods ; 11(18)2022 Sep 06.
Article in English | MEDLINE | ID: mdl-36140850

ABSTRACT

The effects of jet milling on the physicochemical properties of buckwheat flour and the quality characteristics of extruded whole buckwheat noodles (WBN) were investigated in this study. The results reveal that the application of jet milling significantly reduced the particle size of buckwheat flour. As a result, the damaged starch content, water solubility index, water absorption index and swelling power of buckwheat flour all increased. It was worth noting that moderately ground buckwheat flour powder (D50 = 65.86 µm) had the highest pasting viscosity and gel hardness. The breaking rate and cooking loss of extruded whole buckwheat noodles made from the above powder were reduced by 33% and 16%, respectively. Meanwhile, they possessed the highest lightness and firmest network structure. Jet milling increased the soluble dietary fiber (SDF) content from 3.45% to 4.39%, and SDF further increased to 5.28% after noodle extrusion. This study was expected to provide a reference for exploiting high-quality gluten-free noodles from the perspective of milling.

14.
Commun Biol ; 4(1): 945, 2021 08 06.
Article in English | MEDLINE | ID: mdl-34362999

ABSTRACT

Two challenges that the global wheat industry is facing are a lowering nitrogen-use efficiency (NUE) and an increase in the reporting of wheat-protein related health issues. Sulphur deficiencies in soil has also been reported as a global issue. The current study used large-scale field and glasshouse experiments to investigate the sulphur fertilization impacts on sulphur deficient soil. Here we show that sulphur addition increased NUE by more than 20% through regulating glutamine synthetase. Alleviating the soil sulphur deficiency highly significantly reduced the amount of gliadin proteins indicating that soil sulphur levels may be related to the biosynthesis of proteins involved in wheat-induced human pathologies. The sulphur-dependent wheat gluten biosynthesis network was studied using transcriptome analysis and amino acid metabolomic pathway studies. The study concluded that sulphur deficiency in modern farming systems is not only having a profound negative impact on productivity but is also impacting on population health.


Subject(s)
Agriculture/methods , Fertilizers/analysis , Gliadin/metabolism , Nitrogen/metabolism , Soil/chemistry , Sulfur/administration & dosage , Triticum/drug effects , Program Evaluation , Triticum/growth & development
15.
Int J Mol Sci ; 21(21)2020 Nov 05.
Article in English | MEDLINE | ID: mdl-33167324

ABSTRACT

In plant tissues, sugar levels are determined by the balance between sugar import, export, and sugar synthesis. So far, water soluble carbohydrate (WSC) dynamics have not been investigated in a diurnal context in wheat stems as compared to the dynamics in flag leaves during the terminal phases of grain filling. Here, we filled this research gap and tested the hypothesis that WSC dynamics interlink with gene expression of TaSUT1. The main stems and flag leaves of two genotypes, Westonia and Kauz, were sampled at four hourly intervals over a 24 h period at six developmental stages from heading to 28 DAA (days after anthesis). The total levels of WSC and WSC components were measured, and TaSUT1 gene expression was quantified at 21 DAA. On average, the total WSC and fructan levels in the stems were double those in the flag leaves. In both cultivars, diurnal patterns in the total WSC and sucrose were detected in leaves across all developmental stages, but not for the fructans 6-kestose and bifurcose. However, in stems, diurnal patterns of the total WSC and fructan were only found at anthesis in Kauz. The different levels of WSC and WSC components between Westonia and Kauz are likely associated with leaf chlorophyll levels and fructan degradation, especially 6-kestose degradation. High correlation between levels of TaSUT1 expression and sucrose in leaves indicated that TaSUT1 expression is likely to be influenced by the level of sucrose in leaves, and the combination of high levels of TaSUT1 expression and sucrose in Kauz may contribute to its high grain yield under well-watered conditions.


Subject(s)
Carbohydrate Metabolism/genetics , Monosaccharide Transport Proteins/genetics , Plant Leaves/metabolism , Sucrose/metabolism , Triticum , Carbohydrate Metabolism/drug effects , Carbohydrates/chemistry , Circadian Rhythm/physiology , Dehydration/genetics , Dehydration/metabolism , Droughts , Edible Grain/drug effects , Edible Grain/genetics , Edible Grain/metabolism , Gene Expression Regulation, Developmental/drug effects , Gene Expression Regulation, Plant/drug effects , Monosaccharide Transport Proteins/metabolism , Plant Leaves/drug effects , Plant Leaves/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Seeds/drug effects , Seeds/genetics , Seeds/growth & development , Seeds/metabolism , Solubility , Triticum/drug effects , Triticum/genetics , Triticum/growth & development , Triticum/metabolism , Water/chemistry , Water/pharmacology
16.
Exp Ther Med ; 14(5): 4831-4838, 2017 Nov.
Article in English | MEDLINE | ID: mdl-29201187

ABSTRACT

The purpose of this study was to investigate the possible therapeutic mechanism of Shuyu capsules in liver-qi depression. Liver-qi depression rats were prepared based on chronic unpredictable mild stress (CUMS) and delayed constraint. Rats were gavaged with Shuyu capsule, fluoxetine, Radix Bupleuri and Radix Paeoniae Alba to constrct rat models. Body weight test, sucrose preference test and open-field test were applied to test rat models. Western blot analysis and quantitative real-time PCR was applied to determine the relative expression of extracellular signal-regulated protein kinase (ERK), cyclic AMP response element binding protein (CREB) and brain-derived neurotrophic factor (BDNF) in hippocampus and frontal lobe tissues. ELISA was used to detect the content of BDNF in serum. Body weight, sugar intake and total distance were significantly decreased in depression group compared with control. The four drugs significantly increased levels of these factors. Compared with control group, ERK, CREB and BDNF expression were significantly decreased in depression group in both hippocampus and frontal lobe tissues at both mRNA and protein level. Shuyu capsule and fluoxetine group showed a significant increase in the expression of ERK, CREB and BDNF at mRNA, p-ERK and p-BDNF at protein level. Compared with Radix Paeoniae Alba, Radix Bupleuri were better in the rescue of ERK, CREB and BDNF expression. In conclusion, the pathogenesis of liver-qi depression associated with lower expression of ERK, CREB and BDNF in hippocampus and frontal. Shuyu capsule and main constitution alleviated the depressive-like behaviors and reversed the disruptions of the p-ERK, p-CREB and BDNF in stressed rats.

17.
Food Chem ; 212: 367-73, 2016 Dec 01.
Article in English | MEDLINE | ID: mdl-27374544

ABSTRACT

This study aims to investigate whether isotopic signatures can be used to develop reliable fingerprints for discriminating the geographical origin of Chinese winter wheat, and to evaluate the discrimination effects of δ(13)C, δ(15)N and δD, alone or with (87)Sr/(86)Sr. In this study, the values of δ(13)C, δ(15)N and δD, and the (87)Sr/(86)Sr ratios of wheat and provenance soils from three regions were determined. Significant differences were found in all parameters of wheat and (87)Sr/(86)Sr in soil extract (reflecting the bioavailable fraction of soil) among different regions. A significantly positive correlation was observed between the (87)Sr/(86)Sr ratios of wheat and soil extracts. An overall correct classification rate of 77.8% was obtained for discriminating wheat from three regions based on light stable isotopes (δ(13)C, δ(15)N, and δD). The correct classification rate of 98.1% could be obtained with the combination of the (87)Sr/(86)Sr ratio and the light stable isotopic values.


Subject(s)
Carbon Isotopes/analysis , Nitrogen Isotopes/analysis , Seasons , Soil/chemistry , Strontium Isotopes/analysis , Triticum/chemistry , China , Geography , Triticum/growth & development
18.
Food Chem ; 188: 328-36, 2015 Dec 01.
Article in English | MEDLINE | ID: mdl-26041200

ABSTRACT

The structural characteristics of noodle dough under different vacuum mixing times were investigated using three flour samples by texture profile analysis (TPA), SEM, FTIR micro-imaging, and by measuring the glutenin macropolymer and free -SH content. The sheeted dough mixed for 8 min presented better textural properties and a more compact and even microstructure. Insufficient mixing resulted in an uneven distribution and an inadequately developed gluten network, especially for weak-gluten flour (Jimai 22). Excessive mixing was detrimental to the developed dough network and decreased the uniformity of component spatial distribution. Furthermore, excessive mixing led to a decrease in GMP content as well as the increase in free -SH content. Flours with different protein characteristics behaved differently. The TPA, microstructure and free -SH content of dough of Zhengmai 366 was less affected by mixing time than that of Jimai 22, suggesting that strong-gluten flour has better noodle dough mixing tolerance.


Subject(s)
Flour/analysis , Food Handling/methods , Triticum/chemistry , Glutens/analysis , Microscopy, Electron, Scanning , Spectroscopy, Fourier Transform Infrared , Vacuum
19.
Neural Regen Res ; 8(9): 843-52, 2013 Mar 25.
Article in English | MEDLINE | ID: mdl-25206732

ABSTRACT

The extracellular signal-regulated kinase/cAMP response element-binding protein/brain-derived neurotrophic factor signal transduction pathway plays an important role in the mechanism of action of antidepressant drugs and has dominated recent studies on the pathogenesis of depression. In the present review we summarize the known roles of extracellular signal-regulated kinase, cAMP response element-binding protein and brain-derived neurotrophic factor in the pathogenesis of depression and in the mechanism of action of antidepressant medicines. The extracellular signal-regulated kinase/cAMP response element-binding protein/brain-derived neurotrophic factor pathway has potential to be used as a biological index to help diagnose depression, and as such it is considered as an important new target in the treatment of depression.

SELECTION OF CITATIONS
SEARCH DETAIL
...