Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 48
Filter
1.
Opt Express ; 32(8): 13946-13954, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38859352

ABSTRACT

Due to the wave nature of light, the diffraction pattern generated by an optical device is sensitive to the shift of wavelength. This fact significantly compromises the digital micromirror device (DMD) in applications, such as full-color holographic display and multi-color fluorescence microscopy. The existing dispersion compensation techniques for DMD involve adding diffractive elements, which causes a large amount of waste of optical energy. Here, we propose an energy-efficient dispersion compensation method, based on a dispersive prism, for DMD. This method simulates the diffraction pattern of the optical fields reflected from the DMD with an angular spectrum model. According to the simulation, a prism and a set of optical components are introduced to compensate for the angular dispersion of DMD-modulated optical fields. In the experiment, our method reduced the angular dispersion, between the 532 nm and 660 nm light beams, by a factor of ∼8.5.

2.
Atherosclerosis ; 391: 117487, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38492245

ABSTRACT

BACKGROUND AND AIMS: Therapeutic arteriogenesis is a promising direction for the treatment of ischemic disease caused by atherosclerosis. However, pharmacological or biological approaches to stimulate functional collateral vessels are not yet available. Identifying new drug targets to promote and explore the underlying mechanisms for therapeutic arteriogenesis is necessary. METHODS: Peptide OM-LV20 (20 ng/kg) was administered for 7 consecutive days on rat hindlimb ischemia model, collateral vessel growth was assessed by H&E staining, liquid latex perfusion, and specific immunofluorescence. In vitro, we detected the effect of OM-LV20 on human umbilical vein endothelial cells (HUVEC) proliferation and migration. After transfection, we performed quantitative real-time polymerase chain reaction, in situ-hybridization and dual luciferase reporters to assessed effective miRNAs and target genes. The proteins related to downstream signaling pathways were detected by Western blot. RESULTS: OM-LV20 significantly increased visible collateral vessels and endothelial nitric oxide synthase (eNOS), together with enhanced inflammation cytokine and monocytes/macrophage infiltration in collateral vessels. In vitro, we defined a novel microRNA (miR-29b-3p), and its inhibition enhanced proliferation and migration of HUVEC, as well as the expression of vascular endothelial growth factor A (VEGFA). OM-LV20 also promoted migration and proliferation of HUVEC, and VEGFA expression was mediated via inhibition of miR-29b-3p. Furthermore, OM-LV20 influenced the protein levels of VEGFR2 and phosphatidylinositol3-kinase (PI3K)/AKT and eNOS in vitro and invivo. CONCLUSIONS: Our data indicated that OM-LV20 enhanced arteriogenesis via the miR-29b-3p/VEGFA/VEGFR2-PI3K/AKT/eNOS axis, and highlighte the application potential of exogenous peptide molecular probes through miRNA, which could promote effective therapeutic arteriogenesis in ischemic conditions.


Subject(s)
MicroRNAs , Peptides , Vascular Endothelial Growth Factor A , Humans , Rats , Animals , Femoral Artery/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Human Umbilical Vein Endothelial Cells/metabolism , Ischemia/genetics , Cell Proliferation
3.
mSystems ; 9(2): e0103923, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38275296

ABSTRACT

Specific bacterial species have been found to play important roles in human vagina. Achieving high species-level resolution is vital for analyzing vaginal microbiota data. However, contradictory conclusions were yielded from different methodological studies. More comprehensive evaluation is needed for determining an optimal pipeline for vaginal microbiota. Based on the sequences of vaginal bacterial species downloaded from NCBI, we conducted simulated amplification with various primer sets targeting different 16S regions as well as taxonomic classification on the amplicons applying different combinations of algorithms (BLAST+, VSEARCH, and Sklearn) and reference databases (Greengenes2, SILVA, and RDP). Vaginal swabs were collected from participants with different vaginal microecology to construct 16S full-length sequenced mock communities. Both computational and experimental amplifications were performed on the mock samples. Classification accuracy of each pipeline was determined. Microbial profiles were compared between the full-length and partial 16S sequencing samples. The optimal pipeline was further validated in a multicenter cohort against the PCR results of common STI pathogens. Pipeline V1-V3_Sklearn_Combined had the highest accuracy for classifying the amplicons generated from both the NCBI downloaded data (84.20% ± 2.39%) and the full-length sequencing data (95.65% ± 3.04%). Vaginal samples amplified and sequenced targeting the V1-V3 region but merely employing the forward reads (223 bp) and classified using the optimal pipeline, resembled the mock communities the most. The pipeline demonstrated high F1-scores for detecting STI pathogens within the validation cohort. We have determined an optimal pipeline to achieve high species-level resolution for vaginal microbiota with short amplicons, which will facilitate future studies.IMPORTANCEFor vaginal microbiota studies, diverse 16S rRNA gene regions were applied for amplification and sequencing, which affect the comparability between different studies as well as the species-level resolution of taxonomic classification. We conducted comprehensive evaluation on the methods which influence the accuracy for the taxonomic classification and established an optimal pipeline to achieve high species-level resolution for vaginal microbiota with short amplicons, which will facilitate future studies.


Subject(s)
Microbiota , Sexually Transmitted Diseases , Female , Humans , RNA, Ribosomal, 16S/genetics , High-Throughput Nucleotide Sequencing/methods , Phylogeny , Microbiota/genetics , Vagina/microbiology , Bacteria
4.
Medicine (Baltimore) ; 102(48): e36371, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-38050275

ABSTRACT

To investigate the diagnostic value of a novel high-sensitivity urine lipoarabinomannan (LAM) test (chemiluminescence-based) for active tuberculosis in the general population. A retrospective study was conducted on 250 clinical suspected tuberculosis patients who were HIV-negative and visited the Fourth People's Hospital of Foshan from January 2022 to December 2022. Among them, there were 135 cases of pulmonary tuberculosis, 34 cases of extrapulmonary tuberculosis, and 81 cases of non-tuberculosis. Urine samples were collected for LAM antigen detection before treatment, and laboratory data of sputum smear acid-fast staining (smear method), sputum culture, and GeneXpert method were collected. Using clinical diagnosis as the reference standard, the diagnostic efficacy of 4 methods for detecting active tuberculosis was evaluated. For the 135 cases of pulmonary tuberculosis, the sensitivity of sputum smears, sputm culture, sputm GeneXpert method, and urine LAM were 29.6% (40/135), 45.9% (62/135), 59.3% (80/135), and 51.9% (70/135), respectively. The combination of LAM + GeneXpert and LAM + culture had the highest sensitivity for detecting active pulmonary tuberculosis, which were 71.0% and 78.2%, respectively. For the detection of sputum culture-negative pulmonary tuberculosis, the positive rates of smear, GeneXpert, and LAM were 0.0% (0/73), 53.4% (39/73), and 52.1% (38/73), respectively. LAM + smear and LAM + Genexpert could detect 52.1% and 68.5% of sputum culture-negative patients, respectively. The high-sensitivity urine LAM test holds promise for tuberculosis diagnosis in the general population. It demonstrates high-sensitivity, enabling the detection of sputum culture-negative pulmonary tuberculosis patients. Furthermore, when combined with existing methods, it can enhance the overall detection rate.


Subject(s)
HIV Infections , HIV Seropositivity , Mycobacterium tuberculosis , Tuberculosis, Pulmonary , Tuberculosis , Humans , Retrospective Studies , Luminescence , HIV Infections/complications , HIV Infections/drug therapy , Sensitivity and Specificity , Tuberculosis, Pulmonary/diagnosis , Tuberculosis/diagnosis , Lipopolysaccharides , Sputum
5.
Article in English | MEDLINE | ID: mdl-37957900

ABSTRACT

BACKGROUND AND PURPOSE: FuZheng YiLiu Formula (FZYL) is a commonly used formula for postoperative estrogen receptor-positive (ER+) breast cancer and post-radiotherapy deficiency of both Qi and Yin. FZYL has been used in clinical practice for decades because of its ability to effectively improve the symptoms of deficiency in cancer patients. However, its mechanism needs to be further clarified. In this paper, we will observe the effect of FZYL on mice with ER+ breast cancer and explore the mechanism by which it improves the symptoms of ER+ breast cancer. MATERIALS AND METHODS: A tumor xenograft mouse model was established to detect tumor growth in vivo in order to evaluate the pharmacological effects of FZYL on ER+ breast cancer. The main targets of FZYL were identified by extracting the FZYL components and the corresponding potential target genes of breast cancer from the established database and constructing a protein-protein interaction network of shared genes using the string database. GO functional annotation and KEGG pathway enrichment analysis were performed, and molecular docking, molecular dynamics simulations, western blotting analysis, and RT-qPCR were performed to confirm the validity of targets in the relevant pathways. RESULTS: FZYL was able to significantly reduce the size of tumors in vivo and had a significant therapeutic effect on tumor xenograft mice. GO and KEGG pathway enrichment analyses indicated that the effects of FZYL may be mediated by oxidative stress levels, apoptotic signaling pathways, and cell cycle proliferation. By RT-qPCR and protein blotting assays, FZYL targeted the key targets of TP53, JUN, ESR1, RELA, MYC, and MAPK1 to exert its effects. The key active components of FZYL are quercetin, luteolin, stigmasterol, and glycitein. Molecular docking and molecular dynamics simulation results further demonstrated that the key active components of FZYL are stably bound to the core targets. CONCLUSION: In this study, the potential active ingredients, potential core targets, key biological pathways, and signaling pathways involved in the treatment of breast cancer with FZYL were identified, providing a theoretical basis for further anti ER+ breast cancer research.

6.
Burns Trauma ; 11: tkad035, 2023.
Article in English | MEDLINE | ID: mdl-38026443

ABSTRACT

Background: Wound management of diabetic foot ulcers (DFUs) is a complex and challenging task, and existing strategies fail to meet clinical needs. Therefore, it is important to develop novel drug candidates and discover new therapeutic targets. However, reports on peptides as molecular probes for resolving issues related to DFUs remain rare. This study utilized peptide RL-QN15 as an exogenous molecular probe to investigate the underlying mechanism of endogenous non-coding RNA in DFU wound healing. The aim was to generate novel insights for the clinical management of DFUs and identify potential drug targets. Methods: We investigated the wound-healing efficiency of peptide RL-QN15 under diabetic conditions using in vitro and in vivo experimental models. RNA sequencing, in vitro transfection, quantitative real-time polymerase chain reaction, western blotting, dual luciferase reporter gene detection, in vitro cell scratches, and cell proliferation and migration assays were performed to explore the potential mechanism underlying the promoting effects of RL-QN15 on DFU repair. Results: Peptide RL-QN15 enhanced the migration and proliferation of human immortalized keratinocytes (HaCaT cells) in a high-glucose environment and accelerated wound healing in a DFU rat model. Based on results from RNA sequencing, we defined a new microRNA (miR-4482-3p) related to the promotion of wound healing. The bioactivity of miR-4482-3p was verified by inhibiting and overexpressing miR-4482-3p. Inhibition of miR-4482-3p enhanced the migration and proliferation ability of HaCaT cells as well as the expression of vascular endothelial growth factor B (VEGFB). RL-QN15 also promoted the migration and proliferation ability of HaCaT cells, and VEGFB expression was mediated via inhibition of miR-4482-3p expression by the p38 mitogen-activated protein kinase (p38MAPK) and smad3 signaling pathways. Conclusions: RL-QN15 is an effective molecule for the treatment of DFUs, with the underlying mechanism related to the inhibition of miR-4482-3p expression via the p38MAPK and smad3 signaling pathways, ultimately promoting re-epithelialization, angiogenesis and wound healing. This study provides a theoretical basis for the clinical application of RL-QN15 as a molecular probe in promoting DFU wound healing.

7.
Amino Acids ; 55(11): 1687-1699, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37794194

ABSTRACT

Excessive melanogenesis leads to hyperpigmentation, which is one of the common skin conditions in humans. Existing whitening cosmetics cannot meet market needs due to their inherent limitations. Thus, the development of novel skin-whitening agents continues to be a challenge. The peptide OA-VI12 from the skin of amphibians at high altitude has attracted attention due to its remarkable anti light damage activity. However, whether OA-VI12 has the skin-whitening effect of inhibiting melanogenesis is still. Mouse melanoma cells (B16) were used to study the effect of OA-VI12 on cell viability and melanin content. The pigmentation model of C57B/6 mouse ear skin was induced by UVB and treated with OA-VI12. Melanin staining was used to observe the degree of pigmentation. MicroRNA sequencing, quantitative real-time PCR (qRT-PCR), immunofluorescence analysis and Western blot were used to detect the change of factor expression. Double luciferase gene report experiment was used to prove the regulatory relationship between miRNA and target genes. OA-VI12 has no effect on the viability of B16 cells in the concentration range of 1-100 µM and significantly inhibits the melanin content of B16 cells. Topical application of OA-VI12, which exerted transdermal potency, prevented UVB-induced pigmentation of ear skin. MicroRNA sequencing and double luciferase reporter analysis results showed that miR-122-5p, which directly regulated microphthalmia-associated transcription factor (Mitf), had significantly different expression before and after treatment with OA-VI12. Mitf is a simple helix loop and leucine zipper transcription factor that regulates tyrosinase (Tyr) expression by binding to the M-box promoter element of Tyr. qRT-PCR, immunofluorescence analysis and Western blot showed that OA-VI12 up-regulated the expression of miR-122-5p and inhibited the expression of Mitf and Tyr. The effects of OA-VI12 on melanogenesis inhibition in vitro and in vivo may involve the miR-122-5p/Mitf/tyr axis. OA-VI12 represents the first report on a natural amphibian-derived peptide with skin-whitening capacity and the first report of miR-122-5p as a target for regulating melanogenesis, thereby demonstrating its potential as a novel skin-whitening agent and highlighting amphibian-derived peptides as an underdeveloped resource.


Subject(s)
Melanins , MicroRNAs , Humans , Animals , Mice , Melanins/metabolism , Monophenol Monooxygenase/genetics , Melanocytes/metabolism , Microphthalmia-Associated Transcription Factor/genetics , Microphthalmia-Associated Transcription Factor/metabolism , Microphthalmia-Associated Transcription Factor/pharmacology , MicroRNAs/genetics , MicroRNAs/metabolism , Luciferases/metabolism , Peptides/pharmacology , Cell Line, Tumor
8.
Environ Toxicol ; 38(12): 2826-2835, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37565786

ABSTRACT

BACKGROUND: Active peptides play a vital role in the development of new drugs and the identification and discovery of drug targets. As the first reported native peptide homodimer with pro-regenerative potency, OA-GP11d could potentially be used as a novel molecular probe to help elucidate the molecular mechanism of skin wound repair and provide new drug targets. METHODS: Bioinformatics analysis and luciferase assay were adopted to determine microRNAs (miRNAs) and its target. The prohealing potency of the miRNA was determined by MTS and a Transwell experiment against mouse macrophages. Enzyme-linked immunosorbent assay, realtime polymerase chain reaction, and western blotting were performed to explore the molecular mechanisms. RESULTS: In this study, OA-GP11d was shown to induce Mus musculus microRNA-186-5p (mmu-miR-186-5p) down-regulation. Results showed that miR-186-5p had a negative effect on macrophage migration and proliferation as well as a targeted and negative effect on TGF-ß type II receptor (TGFßR2) expression and an inhibitory effect on activation of the downstream SMAD family member 2 (Smad2) and protein-p38 kinase signaling pathways. Importantly, delivery of a miR-186-5p mimic delayed skin wound healing in mice. CONCLUSION: miR-186-5p regulated macrophage migration and proliferation to delay wound healing through the TGFßR2/Smad2/p38 molecular axes, thus providing a promising new pro-repair drug target.


Subject(s)
MicroRNAs , Animals , Mice , Cell Proliferation , MicroRNAs/genetics , MicroRNAs/metabolism , Down-Regulation , Cell Movement/genetics , Wound Healing
9.
Cell Mol Biol Lett ; 28(1): 61, 2023 Jul 28.
Article in English | MEDLINE | ID: mdl-37501100

ABSTRACT

BACKGROUND: Amphibian derived pro-healing peptides as molecular probes might provide a promising strategy for development of drug candidates and elucidation of cellular and molecular mechanisms of skin wound healing. A novel skin amphibian peptide, OA-RD17, was tested for modulation of cellular and molecular mechanisms associated with skin wound healing. METHODS: Cell scratch, cell proliferation, trans-well, and colony formation assays were used to explore the pro-healing ability of peptide OA-RD17 and microRNA-632 (miR-632). Then, the therapeutic effects of OA-RD17 and miR-632 were assessed in mice, diabetic patient ex vivo skin wounds and SD rats. Moreover, hematoxylin and eosin (H&E), enzyme-linked immunosorbent assay (ELISA), immunohistochemistry, and immunofluorescence staining were performed to detect skin wound tissue regeneration, inflammatory factors expression, and macrophage polarization. Finally, RNA sequencing, molecular docking, co-localization, dual luciferase reporter, real-time quantitative reverse transcription PCR (RT-qPCR), and Western blotting were used to explore the mechanism of OA-RD17 and miR-632 on facilitating skin wound healing. RESULTS: The non-toxic peptide (OA-RD17) promoted macrophage proliferation and migration by activating MAPK and suppressed inflammation by inhibiting NF-κB. In keratinocytes, OA-RD17 inhibited excessive inflammation, and activated MAPK via the Toll-like receptor 4 (TLR4) to promote proliferation and migration, as well as up-regulate the expression of miR-632, which targeted GSK3ß to activate Wnt/ß-catenin to boost proliferation and migration in a positive feedback manner. Notably, OA-RD17 promoted transition from the inflammatory to proliferative stage, accelerated epidermal and granulation regeneration, and exhibited therapeutic effects on mouse and diabetic patient ex vivo skin wounds. MiR-632 activated Wnt/ß-catenin to promote full-thickness skin wound healing in rats. CONCLUSIONS: OA-RD17 exhibited promising therapeutic effects on mice (full-thickness, deep second-degree burns), and ex vivo skin wounds in diabetic patients by regulating macrophages proliferation, migration, and polarization (MAPK, NF-κB), and keratinocytes proliferation and migration (TLR4/MAPK/miR-632/Wnt/ß-catenin molecular axis). Moreover, miR-632 also activated Wnt/ß-catenin to promote full-thickness skin wound healing in rats. Notably, our results indicate that OA-RD17 and miR-632 are promising pro-healing drug candidates.


Subject(s)
MicroRNAs , beta Catenin , Mice , Rats , Animals , beta Catenin/metabolism , Toll-Like Receptor 4 , NF-kappa B/metabolism , Molecular Docking Simulation , Rats, Sprague-Dawley , Wound Healing , Peptides/pharmacology , MicroRNAs/genetics , Inflammation , Cell Proliferation/genetics
10.
BMC Nephrol ; 24(1): 207, 2023 07 13.
Article in English | MEDLINE | ID: mdl-37443012

ABSTRACT

BACKGROUND: The kidney is particularly vulnerable to toxins due to its abundant blood supply, active tubular reabsorption, and medullary interstitial concentration. Currently, calcium phosphate-induced and calcium oxalate-induced nephropathies are the most common crystalline nephropathies. Hyperoxaluria may lead to kidney stones and progressive kidney disease due to calcium oxalate deposition leading to oxalate nephropathy. Hyperoxaluria can be primary or secondary. Primary hyperoxaluria is an autosomal recessive disease that usually develops in childhood, whereas secondary hyperoxaluria is observed following excessive oxalate intake or reduced excretion, with no difference in age of onset. Oxalate nephropathy may be overlooked, and the diagnosis is often delayed or missed owning to the physician's inadequate awareness of its etiology and pathogenesis. Herein, we discuss the pathogenesis of hyperoxaluria with two case reports, and our report may be helpful to make appropriate treatment plans in clinical settings in the future. CASE PRESENTATION: We report two cases of acute kidney injury, which were considered to be due to oxalate nephropathy in the setting of purslane (portulaca oleracea) ingestion. The two patients were elderly and presented with oliguria, nausea, vomiting, and clinical manifestations of acute kidney injury requiring renal replacement therapy. One patient underwent an ultrasound-guided renal biopsy, which showed acute tubulointerstitial injury and partial tubular oxalate deposition. Both patients underwent hemodialysis and were discharged following improvement in creatinine levels. CONCLUSIONS: Our report illustrates two cases of acute oxalate nephropathy in the setting of high dietary consumption of purslane. If a renal biopsy shows calcium oxalate crystals and acute tubular injury, oxalate nephropathy should be considered and the secondary causes of hyperoxaluria should be eliminated.


Subject(s)
Acute Kidney Injury , Hyperoxaluria , Portulaca , Humans , Aged , Calcium Oxalate , Hyperoxaluria/complications , Oxalates/adverse effects , Acute Kidney Injury/chemically induced , Acute Kidney Injury/diagnosis , Acute Disease
11.
Curr Neuropharmacol ; 21(12): 2550-2562, 2023.
Article in English | MEDLINE | ID: mdl-37132110

ABSTRACT

BACKGROUND: OL-FS13, a neuroprotective peptide derived from Odorrana livida, can alleviate cerebral ischemia-reperfusion (CI/R) injury, although the specific underlying mechanism remains to be further explored. OBJECTIVE: The effect of miR-21-3p on the neural-protective effects of OL-FS13 was examined. METHODS: In this study, the multiple genome sequencing analysis, double luciferase experiment, RT-qPCR, and Western blotting were used to explore the mechanism of OL-FS13. RESULTS: Showed that over-expression of miR-21-3p against the protective effects of OL-FS13 on oxygen- glucose deprivation/re-oxygenation (OGD/R)-damaged pheochromocytoma (PC12) cells and in CI/R-injured rats. miR-21-3p was then found to target calcium/calmodulin-dependent protein kinase 2 (CAMKK2), and its overexpression inhibited the expression of CAMKK2 and phosphorylation of its downstream adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK), thereby inhibiting the therapeutic effects of OL-FS13 on OGD/R and CI/R. Inhibition of CAMKK2 also antagonized up-regulated of nuclear factor erythroid 2-related factor 2 (Nrf-2) by OL-FS13, thereby abolishing the antioxidant activity of the peptide. CONCLUSION: Our results showed that OL-FS13 alleviated OGD/R and CI/R by inhibiting miR-21-3p to activate the CAMKK2/AMPK/Nrf-2 axis.


Subject(s)
Brain Ischemia , MicroRNAs , Reperfusion Injury , Rats , Animals , MicroRNAs/metabolism , AMP-Activated Protein Kinases/pharmacology , AMP-Activated Protein Kinases/therapeutic use , Neuroprotection , Oxygen/metabolism , Apoptosis , Brain Ischemia/metabolism
12.
J Neuroinflammation ; 20(1): 53, 2023 Feb 28.
Article in English | MEDLINE | ID: mdl-36855153

ABSTRACT

BACKGROUND: Despite considerable efforts, ischemic stroke (IS) remains a challenging clinical problem. Therefore, the discovery of effective therapeutic and targeted drugs based on the underlying molecular mechanism is crucial for effective IS treatment. METHODS: A cDNA-encoding peptide was cloned from RNA extracted from Rana limnocharis skin, and the mature amino acid sequence was predicted and synthesized. Hemolysis and acute toxicity of the peptide were tested. Furthermore, its neuroprotective properties were evaluated using a middle cerebral artery occlusion/reperfusion (MCAO/R) model in rats and an oxygen-glucose deprivation/reperfusion (OGD/R) model in neuron-like PC12 cells. The underlying molecular mechanisms were explored using microRNA (miRNA) sequencing, quantitative real-time polymerase chain reaction, dual-luciferase reporter gene assay, and western blotting. RESULTS: A new peptide (NP1) with an amino acid sequence of 'FLPAAICLVIKTC' was identified. NP1 showed no obvious toxicities in vivo and in vitro and was able to cross the blood-brain barrier. Intraperitoneal administration of NP1 (10 nmol/kg) effectively reduced the volume of cerebral infarction and relieved neurological dysfunction in MCAO/R model rats. Moreover, NP1 significantly alleviated the decrease in viability and increase in apoptosis of neuron-like PC12 cells induced by OGD/R. NP1 effectively suppressed inflammation by reducing interleukin-1ß (IL-1ß) and tumor necrosis factor-α (TNF-α) levels in vitro and in vivo. Furthermore, NP1 up-regulated the expression of miR-6328, which, in turn, down-regulated kappa B kinase ß (IKKß). IKKß reduced the phosphorylation of nuclear factor-kappa B p65 (NF-κB p65) and inhibitor of NF-κB (I-κB), thereby inhibiting activation of the NF-κB pathway. CONCLUSIONS: The newly discovered non-toxic peptide NP1 ('FLPAAICLVIKTC') exerted neuroprotective effects on cerebral ischemia-reperfusion injury by reducing inflammation via the miR-6328/IKKß/NF-κB axis. Our findings not only provide an exogenous peptide drug candidate and endogenous small nucleic acid drug candidate but also a new drug target for the treatment of IS. This study highlights the importance of peptides in the development of new drugs, elucidation of pathological mechanisms, and discovery of new drug targets.


Subject(s)
MicroRNAs , Neuroprotective Agents , Reperfusion Injury , Animals , Rats , NF-kappa B , I-kappa B Kinase , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Protein Serine-Threonine Kinases , Peptides/pharmacology , Peptides/therapeutic use , Reperfusion Injury/drug therapy
13.
BMJ Open ; 12(9): e057328, 2022 09 01.
Article in English | MEDLINE | ID: mdl-36581976

ABSTRACT

INTRODUCTION: Studies have suggested that the vaginal microbiome and gut microbiome are involved in pregnancy-related diseases, but little exploration of the link with early miscarriage or threatened miscarriage (TM) has been done. Whether the characteristics of the vaginal microbiome and gut microbiome in early pregnancy are related to TM and early pregnancy outcomes remains unclear. METHODS AND ANALYSIS: The Microbiome Characteristics in Early Threatened Miscarriage Study (MCETMS) is a prospective investigation that will recruit 326 pregnant women with early TM. Pregnant women will be enrolled at 4-8 weeks of gestation, and their vaginal secretions, faecal samples, clinical data and sociodemographic characteristics will be collected prospectively. Pregnant women with TM will be followed up to 12 weeks of gestation to determine the early pregnancy outcomes (ongoing pregnancy or pregnancy loss). DNA will be extracted from the collected samples and will be analysed by 16S rRNA gene sequencing. ETHICS AND DISSEMINATION: The MCETMS study protocol has been approved by the Ethics Committee of the First Affiliated Hospital of Guangzhou Traditional Chinese Medical University (ZYYECK[2020]051). Dissemination of study findings will occur through peer-reviewed journals, conferences and presentations. TRIAL REGISTRATION NUMBER: ChiCTR2000041172.


Subject(s)
Abortion, Spontaneous , Abortion, Threatened , Microbiota , Pregnancy Complications , Pregnancy , Female , Humans , Prospective Studies , RNA, Ribosomal, 16S/genetics , Microbiota/genetics , China/epidemiology
14.
BMC Womens Health ; 22(1): 437, 2022 11 08.
Article in English | MEDLINE | ID: mdl-36348390

ABSTRACT

BACKGROUND: Gut microbes were closely related to women's health. Previous studies reported that the gut microbes of premenopausal women were different from those of postmenopausal women. However, little was known about the relationship between gut microbiota dysbiosis and menopausal syndrome (MPS). The aim of this study was to explore the relationship between MPS and gut microbes. METHODS: Patients with MPS (P group, n = 77) and healthy women (H group, n = 24) at menopause were recruited in this study. The stool specimen and clinical parameters (demographic data, follicle stimulating hormone (FSH), luteinizing hormone (LH), estradiol (E2), et al) of participants' were collected. We evaluated the differences in gut microbes by 16S ribosomal RNA gene sequencing. We used LEfSe to identify gut microbes with varying abundances in different groups. The Spearman correlation coefficients of clinical parameters and gut microbes were calculated. PICRUSt was used to predict the potential KEGG Ortholog functional profiles of microbial communities. RESULTS: The abundance of 14 species differed substantially between the MPS and menopausal healthy women (LDA significance threshold > 2.0) according to LEfSe analysis. Using Spearman's correlation analysis, it was discovered that E2 had a positive correlation with Aggregatibacter segnis, Bifidobacterium animalis, Acinetobacter guillouiae (p < 0.05, these three species were enriched in menopausal healthy women), while FSH and LH had a negative correlation with them (p < 0.05). KEGG level3 metabolic pathways relevant to cardiovascular disease and carbohydrate metabolism were enriched in the MPS (p < 0.05), according to functional prediction by PICRUST and analyzed by Dunn test. CONCLUSION: There was gut microbiota dysbiosis in MPS, which is reflected in the deficiency of the abundance of Aggregatibacter segnis, Bifidobacterium animalis and Acinetobacter guillouiae related to the level of sex hormones. In MPS individuals, species with altered abundances and unique functional pathways were found.


Subject(s)
Dysbiosis , Gastrointestinal Microbiome , Humans , Female , Dysbiosis/microbiology , Gastrointestinal Microbiome/genetics , Luteinizing Hormone , Follicle Stimulating Hormone , Menopause
15.
Front Pharmacol ; 13: 1052177, 2022.
Article in English | MEDLINE | ID: mdl-36438800

ABSTRACT

Introduction: Tremendous evidence indicates that N6-methyladenosine (m6A) epigenetic modification and m6A-related enzymes constitute a complex network, which jointly regulates prevailing pathological processes and various signaling pathways in humankind. Currently, the role of the m6A-mediated molecular regulatory network in hepatocellular carcinoma (HCC) remains elusive. Methods: We recruited expression and pathological files of 368 HCC patients from The Cancer Genome Atlas cohort. Four public datasets serve as external authentication sets for nearest template prediction (NTP) validation. The correlation between 35 regulators and their prognostic value was compared. Gene set variation analysis (GSVA) was used to explore the latent mechanism. Four independent algorithms (ssGSEA, xCell, MCP-counter, and TIMER) were used to calculate the ratio of tumor cells and non-tumor cells to evaluate the tumor immune microenvironment. The m6Ascore model was established by principal component analysis (PCA). Prediction of immunotherapy and potential drugs was performed using TIDE and SubMap. Results: A total of 35 m6A regulators were widely associated, most of which were risk factors for HCC patients. The m6A phenotypic-cluster revealed differences in regulator transcriptional level, gene mutation frequency, functional pathways, and immune cell infiltration abundance under distinct m6A patterns. As expected, the m6A gene cluster confirmed the aforementioned results. The m6Ascore model further found that patients in the high-m6Ascore group were associated with lower tumor purity, higher enrichment of immune and stromal cells, upregulation of metabolic pathways, lower expression of m6A regulators, and favorable outcomes. Low-m6Ascore patients were associated with adverse outcomes. Notably, low-m6Ascore patients might be more sensitive to anti-PD-L1 therapy. Conclusion: This study found that a classification model based on the m6A manner could predict HCC prognosis and response to immunotherapy for HCC patients, which might improve prognosis and contribute to clinical individualized decision-making.

16.
Front Public Health ; 10: 942282, 2022.
Article in English | MEDLINE | ID: mdl-35937275

ABSTRACT

Background: Pulmonary cryptococcosis (PC) is a serious opportunistic fungal infection that usually occurs in immunocompromised patients. This disease is often difficult to diagnose in time due to its clinical manifestations and radiological feature similar to other pulmonary infections, as well as the low sensitivity of conventional diagnostic methods. Cryptococcosis in immune-competent patients is rare. Case Presentation: Here we report a case of PC in an immune-competent patient. Tuberculosis was suspected according to radiological features due to the positive T-lymphocyte spot test and pure protein derivative skin test. To further detect the pathogen, bronchoalveolar lavage fluid (BALF) was collected for metagenomic next-generation sequencing (mNGS). Cryptococcus neoformans (one specific read) was identified by mNGS, indicating the PC of this patient. The following BALF culture and cryptococcal antigen lateral flow assay (CrAg-LFA) test also showed Cryptococcus infection, confirming the mNGS detection. Voriconazole (0.4 g daily) was given orally according to the subsequent susceptibility results. After seven months of treatment, the patient's condition improved. Conclusion: Metagenomic next-generation sequencing (mNGS) is a better diagnostic tool to help clinicians distinguish pulmonary cryptococcosis from other atypical pulmonary infections.


Subject(s)
Cryptococcosis , Cryptococcus neoformans , Pneumonia , Cryptococcosis/diagnosis , Cryptococcosis/drug therapy , Cryptococcosis/microbiology , Cryptococcus neoformans/genetics , High-Throughput Nucleotide Sequencing , Humans , Immunity , Metagenomics/methods
17.
Reprod Health ; 19(1): 137, 2022 Jun 13.
Article in English | MEDLINE | ID: mdl-35698149

ABSTRACT

BACKGROUND: Bacterial vaginosis (BV) is one of the most common vaginal infectious diseases in female reproductive period. Although the existing view is that probiotic treatment may be one of the feasible methods for the treatment of BV, different intervention methods lead to different treatment results. Therefore, up-to-date and comprehensive evidence in this regard is essential for the development of intervention strategies. OBJECTIVE: This meta-analysis aims to systematically evaluate the role of probiotics in the treatment of BV in adult women. METHODS: We searched the databases of Embase, Cochrane Library, PubMed, Web of Science and ClinicalTrials.gov for Randomized Controlled Trials published until November 7, 2021. Meta-analysis was performed by Revman5.3 software to systematically evaluate the clinical efficacy of probiotics adjunctive therapy in the treatment of BV. The literatures were screened and evaluated according to the inclusion and exclusion criteria. Chi-square test was used to test the heterogeneity between trials. Random or Fixed effect models were used to analyze the cure rate of BV. RESULTS: Fourteen randomized controlled trials compared the efficacy of probiotics with antibiotic therapy (probiotics + antibiotics group) versus antibiotics alone or plus placebo (antibiotics (+ placebo) group) for BV [Risk Ratios (RR) = 1.23, 95% CI (1.05, 1.43), P = 0.009]. Three compared the efficacy of probiotics regimen (probiotics group) and antibiotics (antibiotics group) in the treatment of BV [RR = 1.12, 95% CI (0.60, 2.07), P = 0.72]. Another Three compared the efficacy of probiotics regimen (probiotics group) with placebo (placebo group) [RR = 15.20, 95% CI (3.87, 59.64), P < 0.0001]. CONCLUSION: Our meta-analysis suggests probiotics may play a positive role in the treatment of BV, but more strong evidence is needed.


Our meta-analysis found that probiotics may play an active role in adjuvant treatment of bacterial vaginosis by conventional antibiotic therapy. It was emphasized that oral administration of L. rhamnose was more effective than vaginal application of L. rhamnose in the treatment of bacterial vaginosis. The therapeutic effect of probiotics varies with the administration route and dosage of probiotics.


Subject(s)
Probiotics , Vaginosis, Bacterial , Administration, Intravaginal , Adult , Anti-Bacterial Agents/therapeutic use , Female , Humans , Probiotics/therapeutic use , Randomized Controlled Trials as Topic , Vagina/microbiology , Vaginosis, Bacterial/drug therapy
18.
Biomed Pharmacother ; 150: 112987, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35462334

ABSTRACT

Although amphibian-derived bioactive peptides have attracted increasing attention for their potential use in the treatment of photodamage, research is still in its infancy. In this study, we obtained a new antioxidant peptide, named OA-GI13 (GIWAPWPPRAGLC), from the skin of the odorous frog Odorrana andersonii and determined its effects on ultraviolet B (UVB)-induced skin photodamage as well as its possible molecular mechanisms. Results showed that OA-GI13 directly scavenged free radicals, maintained the viability of hydrogen peroxide-challenged keratinocytes, promoted the release of superoxide dismutase, catalase, and glutathione, and reduced the level of lactate dehydrogenase. Furthermore, topical application of OA-GI13 in mice alleviated dorsal skin erythema and edema and protected the skin against UVB irradiation by increasing antioxidant levels and decreasing peroxide, malondialdehyde, and 8-hydroxydeoxyguanosine levels. OA-GI13 also alleviated oxidative stress injury in vivo and in vitro, possibly by inhibiting p38 protein phosphorylation. Our study confirmed the anti-photodamage effects of this novel amphibian-derived peptide, thus providing a new molecule for the development of drugs and topical agents for the treatment of skin photodamage.


Subject(s)
Antioxidants , Skin , Animals , Antioxidants/metabolism , Antioxidants/pharmacology , Mice , Oxidative Stress , Peptides/chemistry , Ranidae/metabolism , Ultraviolet Rays/adverse effects
19.
Cancer Manag Res ; 14: 895-907, 2022.
Article in English | MEDLINE | ID: mdl-35256861

ABSTRACT

Purpose: We aimed to develop and to validate a novel nomogram based on inflammatory markers to preoperatively predict microvascular invasion (MVI) in patients with solitary primary hepatocellular carcinoma (HCC). Patients and Methods: Data from 658 patients with solitary primary HCC who underwent hepatectomy at the First Affiliated Hospital of Zhengzhou University from June 2018 to October 2021 were retrospectively analyzed. Patients were divided into training (n=441) and validation (n=217) cohorts according to surgical data. Independent risk factors for MVI were identified via univariate and multivariate logistic regression analyses in the training cohort. A novel nomogram was developed based on the independent risk factors identified. Its accuracy was evaluated using a calibration curve and concordance index (C-index). The predictive value was evaluated using the receiver operating characteristic (ROC) curve and decision curve analysis (DCA). Results: Preoperative alpha-fetoprotein >969 µg/L (P<0.001), tumor size (P=0.002), neutrophil >1.8×109/L (P=0.002), gamma-glutamyl transpeptidase-to-platelet ratio (GPR) >0.32 (P=0.001), aspartate aminotransferase-to-platelet ratio (APR) >0.18 (P<0.001), gamma-glutamyl transpeptidase-to-albumin ratio (GAR) >2.30 (P=0.001), and gamma-glutamyl transpeptidase-to-lymphocyte ratio >29.58 (P<0.001) were identified as preoperative independent risk factors for MVI and were used to establish the nomogram. The C-index of the training and validation cohorts were 0.788 (95% confidence interval [CI]: 0.744-0.831) and 0.735 (95% CI: 0.668-0.802), respectively. The calibration curve analysis revealed that the standard curve fit well with the predicted curve. ROC curve analysis demonstrated high efficiency of the nomogram. DCA verified that the nomogram had notable clinical value. Conclusion: Preoperative GPR >0.32, APR >0.18, and GAR >2.30 were independent risk factors for MVI in patients with solitary primary HCC, suggesting their utility as preoperative predictors of MVI. The novel nomogram developed and validated in this study may aid in determining optimal therapeutic approaches for patients with solitary HCC at risk for MVI.

20.
Microbiol Spectr ; 10(2): e0203921, 2022 04 27.
Article in English | MEDLINE | ID: mdl-35311570

ABSTRACT

Spontaneous abortion (SA) has received more and more attention in light of its increasing incidence. However, the causes and pathogenesis of SA remain largely unknown, especially for those without any pathological features. In this study, we characterized the vaginal microbiota diversity and composition of pregnant women in their first trimester and evaluated the association between the vaginal microbiota and SA before 12 weeks of gestation. Participants' bacterial profiles were analyzed by 16S rRNA gene sequencing in the V3-V4 regions at 5-8 weeks of gestation. A total of 48 patients with SA at 12 weeks of gestation were included as the study group, while 116 women with normal pregnancies (NPs) were included as a control group. The results indicated that the richness of the vaginal microbiome in SA patients was higher (Chao1, P < 0.05) and different in composition relative to that of women with NPs (unweighted UniFrac, R = 0.15, P < 0.01; binary Jaccard, R = 0.15, P < 0.01). Furthermore, the genus Apotobium was significantly enriched in SA patients. An extreme gradient-boosting (XGBoost) analysis was able to classify Atopobium-induced SA more reliably (area under the receiver operating characteristic curve, 0.69; threshold, 0.01%). Moreover, after adjusting for potential confounders, the results showed a robust association between Apotobium and SA (as a categorical variable [<0.01%]; adjusted odds ratio, 2.9; 95% confidence interval, 1.3 to 6.5; P = 0.01). In conclusion, higher vaginal Apotobium levels were associated with SA in the first trimester. IMPORTANCE Spontaneous abortion (SA) is the most common adverse pregnancy outcome in the first trimester. The causal drivers of SA have become a substantial challenge to reveal and overcome. We hypothesize that vaginal microbial dysbiosis is associated with SA, as it was related to several female reproductive disorders in previous studies. In our study, we characterized the vaginal microbiota of patients with SA at 12 weeks of gestation as the study group, and women with normal pregnancies were enrolled as a control group. Generally, significant differences were discovered in the vaginal microbiota between the two groups. Our study also revealed that Apotobium may play an important role in the pathogenesis of SA. To our knowledge, this study is the first detailed elaboration of the vaginal microbiota composition and vaginal Apotobium in association with SA. We believe that our findings will inspire more researchers to consider dynamic changes in the vaginal microbiota as critical features for further studies of nosogenesis not only for SA but also other reproductive diseases.


Subject(s)
Abortion, Spontaneous , Actinobacteria , Abortion, Spontaneous/epidemiology , Female , Humans , Male , Pregnancy , Pregnancy Trimester, First , Prospective Studies , RNA, Ribosomal, 16S/genetics , Vagina/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...