Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Publication year range
1.
PLoS One ; 19(4): e0302367, 2024.
Article in English | MEDLINE | ID: mdl-38683798

ABSTRACT

The mesoscale eddy characteristics of the Mozambique Warm Current were investigated by detecting and tracking satellite altimetry data from 2010 to 2019. A total of 1,086 eddies were identified in the Mozambique Channel, comprising 509 cyclonic eddies and 577 anticyclonic eddies. The results revealed that the bay area on the northwest coast of Madagascar was the main hotspot of eddy generation, and the mean amplitude and radius of the anticyclonic eddies in the Mozambique Channel were 24.23 cm and 82.7 km, respectively, which are larger than those of the cyclonic eddies. Local wind forcing had a significant impact on the formation of mesoscale eddies in the Mozambique Channel. In winter, the wind stress in the northern and southern areas of the Mozambique Channel exhibited a strong correlation with the distribution of eddy kinetic energy (EKE), where both monsoonal winds in the north and trade winds in the south could facilitate mesoscale anticyclonic eddy formation. In addition, the variability in the number of anticyclonic and cyclonic eddies in the Mozambique Channel may have exerted a significant influence on the seasonal anomalous fluctuations in local sea surface temperatures (SSTs). This study presented a novel analysis of the mesoscale eddy characteristics in the Mozambique Channel.


Subject(s)
Seasons , Wind , Mozambique , Madagascar , Cyclonic Storms
2.
Hortic Res ; 11(1): uhad254, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38274648

ABSTRACT

Gray mold caused by Botrytis cinerea is one of the major threats in lily production. However, limited information is available about the underlying defense mechanism against B. cinerea in lily. Here, we characterized a nuclear-localized class A heat stress transcription factor (HSF)-LlHSFA4 from lily (Lilium longiflorum), which positively regulated the response to B. cinerea infection. LlHSFA4 transcript and its promoter activity were increased by B. cinerea infection in lily, indicating its involvement in the response to B. cinerea. Virus-induced gene silencing (VIGS) of LlHSFA4 impaired the resistance of lily to B. cinerea. Consistent with its role in lily, overexpression of LlHSFA4 in Arabidopsis (Arabidopsis thaliana) enhanced the resistance of transgenic Arabidopsis to B. cinerea infection. Further analysis showed that LlWRKY33 directly activated LlHSFA4 expression. We also found that both LlHSFA4 and LlWRKY33 positively regulated plant response to B. cinerea through reducing cell death and H2O2 accumulation and activating the expression of the reactive oxygen species (ROS) scavenging enzyme gene LlCAT2 (Catalase 2) by binding its prompter, which might contribute to reducing H2O2 accumulation in the infected area. Taken together, our data suggested that there may be a LlWRKY33-LlHSFA4-LlCAT2 regulatory module which confers B. cinerea resistance via reducing cell death and the ROS accumulation.

3.
Plant Physiol ; 194(3): 1870-1888, 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-37930281

ABSTRACT

Homeodomain-leucine zipper (HD-Zip) I transcription factors are crucial for plant responses to drought, salt, and cold stresses. However, how they are associated with thermotolerance remains mostly unknown. We previously demonstrated that lily (Lilium longiflorum) LlHB16 (HOMEOBOX PROTEIN 16) promotes thermotolerance, whereas the roles of other HD-Zip I members are still unclear. Here, we conducted a transcriptomic analysis and identified a heat-responsive HD-Zip I gene, LlHOX6 (HOMEOBOX 6). We showed that LlHOX6 represses the establishment of basal thermotolerance in lily. LlHOX6 expression was rapidly activated by high temperature, and its protein localized to the nucleus. Heterologous expression of LlHOX6 in Arabidopsis (Arabidopsis thaliana) and overexpression in lily reduced their basal thermotolerance. In contrast, silencing LlHOX6 in lily elevated basal thermotolerance. Cooverexpressing or cosilencing LlHOX6 and LlHB16 in vivo compromised their functions in modulating basal thermotolerance. LlHOX6 interacted with itself and with LlHB16, although heterologous interactions were stronger than homologous ones. Notably, LlHOX6 directly bounds DNA elements to repress the expression of the LlHB16 target genes LlHSFA2 (HEAT STRESS TRANSCRIPTION FACTOR A2) and LlMBF1c (MULTIPROTEIN BRIDGING FACTOR 1C). Moreover, LlHB16 activated itself to form a positive feedback loop, while LlHOX6 repressed LlHB16 expression. The LlHOX6-LlHB16 heterooligomers exhibited stronger DNA binding to compete for LlHB16 homooligomers, thus weakening the transactivation ability of LlHB16 for LlHSFA2 and LlMBF1c and reducing its autoactivation. Altogether, our findings demonstrate that LlHOX6 interacts with LlHB16 to limit its transactivation, thereby impairing heat stress responses in lily.


Subject(s)
Arabidopsis , Lilium , Thermotolerance , Arabidopsis/genetics , DNA , Heat-Shock Response , Homeodomain Proteins/genetics , Lilium/genetics , Thermotolerance/genetics , Leucine Zippers/genetics
4.
Epigenetics Chromatin ; 16(1): 11, 2023 04 19.
Article in English | MEDLINE | ID: mdl-37076890

ABSTRACT

BACKGROUND: Epigenetic reprogramming is involved in luteinizing hormone (LH)-induced ovulation; however, the underlying mechanisms are largely unknown. RESULTS: We here observed a rapid histone deacetylation process between two waves of active transcription mediated by the follicle-stimulating hormone (FSH) and the LH congener human chorionic gonadotropin (hCG), respectively. Analysis of the genome-wide H3K27Ac distribution in hCG-treated granulosa cells revealed that a rapid wave of genome-wide histone deacetylation remodels the chromatin, followed by the establishment of specific histone acetylation for ovulation. HDAC2 phosphorylation activation coincides with histone deacetylation in mouse preovulatory follicles. When HDAC2 was silenced or inhibited, histone acetylation was retained, leading to reduced gene transcription, retarded cumulus expansion, and ovulation defect. HDAC2 phosphorylation was associated with CK2α nuclear translocation, and inhibition of CK2α attenuated HDAC2 phosphorylation, retarded H3K27 deacetylation, and inactivated the ERK1/2 signaling cascade. CONCLUSIONS: This study demonstrates that the ovulatory signal erases histone acetylation through activation of CK2α-mediated HDAC2 phosphorylation in granulosa cells, which is an essential prerequisite for subsequent successful ovulation.


Subject(s)
Histones , Ovarian Follicle , Female , Mice , Animals , Humans , Ovarian Follicle/metabolism , Histones/metabolism , Phosphorylation , Chromatin Assembly and Disassembly , Granulosa Cells/metabolism , Luteinizing Hormone/metabolism , Luteinizing Hormone/pharmacology , Chorionic Gonadotropin/pharmacology , Chorionic Gonadotropin/metabolism , Histone Deacetylase 2/metabolism
5.
Article in Chinese | MEDLINE | ID: mdl-26653230

ABSTRACT

OBJECTIVE: To study the effects of 1-bromopropane (1-BP) on liver and kidney functions of exposed workers. METHODS: Occupational health situation in three 1-BP plants was investigated. Fifty-four workers from the 1-BP manufacturing line were chose to be contact group, while 42 workers from non-1-BP manufacturing line as control group. All workers underwent questionnaire survey, liver function test as well as kidney function test. RESULT: Working years has no impact on liver and kidney functions of workers from contact group. Compared with the control, liver and kidney functions test of the two groups showed no statistical difference either. CONCLUSION: The present investigation doesn't prove any impact of occupational 1-BP exposure on worker's liver and kidney functions.


Subject(s)
Kidney/drug effects , Liver/drug effects , Occupational Exposure/adverse effects , Humans , Hydrocarbons, Brominated/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL
...