Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 58
Filter
1.
Intractable Rare Dis Res ; 13(2): 99-103, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38836176

ABSTRACT

With the development of clinical experience and technology, rare diseases (RDs) are gradually coming into the limelight. As they often lead to poor prognosis, it is urgent to promote the accuracy and rapidity of diagnosis and promote the development of therapeutic drugs. In recent years, with the rapid improvement of single-cell sequencing technology, the advantages of multi-omics combined application in diseases have been continuously explored. Single-cell metabolomics represents a powerful tool for advancing our understanding of rare diseases, particularly metabolic RDs, and transforming clinical practice. By unraveling the intricacies of cellular metabolism at a single-cell resolution, this innovative approach holds the potential to revolutionize diagnosis, treatment, and management strategies, ultimately improving outcomes for RDs patients. Continued research and technological advancements in single-cell metabolomics are essential for realizing its full potential in the field of RDs diagnosis and therapeutics. It is expected that single-cell metabolomics can be better applied to RDs research in the future, for the benefit of patients and society.

2.
Metallomics ; 2024 May 21.
Article in English | MEDLINE | ID: mdl-38772737

ABSTRACT

Accumulating evidence indicates that plasma metals levels may associate with Type 2 diabetes mellitus (T2DM) incident risk. Mitochondrial function such as mitochondrial DNA copy number (mtDNA-CN) might be linked metal exposure and physiological metabolism. Mediation analysis was conducted to determine the mediating roles of mtDNA-CN in the associations of plasma metals with diabetes risk. In the present study, we investigated associations between plasma metals levels, mtDNA-CN and T2DM incident in elderly population with 6-year follow-up (2 times) study. Ten plasma metals (i.e. manganese (Mg), aluminium (Al), calcium (Ca), ferrum (Fe), barium (Ba), arsenic (As), copper (Cu), selenium (Se), titanium (Ti) and cesium (Sr) were measured by using inductively coupled plasma mass spectrometry (ICP-MS). Mitochondrial DNA copy number was measured by real-time PCR. Multivariable linear regression and logistic regression models were carried out to estimate the relationship between plasma metal concentrations, mtDNA-CN and T2DM incident risk in the current work. Plasma Ba deficiency and mtDNA-CN decline associated with T2DM incident risk during aging process. Meanwhile plasma Ba found to be positively associated with mtDNA-CN. Mitochondrial function mtDNA-CN demonstrated mediating effects in association between plasma Ba deficiency and T2DM incident risk, and 49.8% of the association was mediated by mtDNA-CN. These findings extend the knowledge of T2DM incident risk factors and highlight the point that mtDNA-CN may be linked metals element and T2DM incident risk.

3.
Food Chem ; 447: 138952, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-38461720

ABSTRACT

The edible coating is proved to be a convenient approach for fruit preservation. Among these published explorations, naturally sourced macromolecules and green crosslinking strategies gain attention. This work centers on edible coatings containing Ca2+ as crosslinker for the first time, delving into crosslinking mechanisms, include alginate, chitosan, Aloe vera gel, gums, etc. Additionally, the crucial functions of Ca2+ in fruit's quality control are also elaborated in-depth, involving cell wall, calmodulin, antioxidant, etc. Through a comprehensive review, it becomes evident that Ca2+ plays a dual role in fruit edible coating. Specifically, Ca2+ constructs a three-dimensional dense network structure with polymers through ionic bonding. Moreover, Ca2+ acts directly with cell wall to maintain fruit firmness and serve as a second messenger to participate secondary physiological metabolism. In brief, coatings containing Ca2+ present remarkable effects in preserving fruit and this work may provide guidance for Ca2+ related fruit preservation coatings.


Subject(s)
Edible Films , Food Preservation , Food Preservation/methods , Calcium/analysis , Polymers/analysis , Fruit/chemistry
4.
Drug Discov Ther ; 18(1): 1-9, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38417896

ABSTRACT

Endometriosis (EM), also known as Zhengjia in traditional Chinese medicine, is a common disease that significantly impacts women's health. An integrated treatment approach combining traditional Chinese medicine (TCM) and western medicine has demonstrated significant clinical efficacy in the management of this condition. Specifically, it has been effective in addressing blood circulation and other diseases. MicroRNAs (miRNAs), which are molecules important in gene regulation, have been implicated in various physiologic and pathologic processes. In this review, we systematically summarized the potential mechanisms underlying the integrated EM treatment, with a focus on the role of microRNAs (miRNAs). Current research suggests that integrated TCM and western medicine treatment may exert their therapeutic effects on EM by influencing the expression of miRNAs. Through miRNA modulation, such a treatment approach may inhibit the growth of ectopic lesions and alleviate clinical symptoms. This review will shed light on the specific miRNAs that have been implicated in the integrated treatment of EM, as well as their potential mechanisms of action. By consolidating the existing evidence, we aim to provide clinicians and researchers with a clearer understanding of the therapeutic benefits of the integrated approach and potentially identify new avenues for improving clinical treatment outcomes. Ultimately, this review will contribute to the growing body of knowledge in this field, providing a basis for further research and the development of more targeted and efficient treatment strategies for EM.


Subject(s)
Drugs, Chinese Herbal , Endometriosis , MicroRNAs , Humans , Female , Medicine, Chinese Traditional , MicroRNAs/genetics , MicroRNAs/therapeutic use , MicroRNAs/metabolism , Endometriosis/drug therapy , Endometriosis/genetics , Treatment Outcome , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use
5.
J Anim Sci ; 1022024 Jan 03.
Article in English | MEDLINE | ID: mdl-38170568

ABSTRACT

The objective of this experiment was to determine the effects of pelleting on the standardized ileal digestibility (SID) of amino acids (AA) and crude protein (CP) in diets with or without increased concentrations of free AA and reducing sugars (RS). Eight individually housed, ileal cannulated barrows (initially 31.4 kg) were allotted to an 8 × 8 Latin square with eight diets and eight 7-d periods with ileal digesta collected on days 6 and 7. Treatments were arranged in a 2 × 2 × 2 factorial with the main effects of diet form (mash or pellet), crystalline AA (low or high), or RS (low or high), provided by distillers dried grains with solubles and bakery meal. Diets were pelleted to achieve a hot pellet temperature of 85 to 88 °C. Data were analyzed as a Latin square design using the GLIMMIX procedure of SAS 9.4. A feed form × RS interaction (P < 0.026) for SID of tryptophan was observed. Feeding pelleted low RS diets increased SID of tryptophan compared with mash high and low RS diets, and pelleted high RS diets. For the main effects of feed form, the SID of total AA, CP, and indispensable AA was greater (P < 0.042) in pelleted diets compared with mash diets. For the main effects of crystalline AA, pigs fed high crystalline AA had increased (P = 0.007) SID of tryptophan and decreased (P = 0.050) SID of histidine compared with those fed low crystalline AA diets. For the main effects of RS, high RS diets had decreased (P < 0.05) SID of total AA, CP, and indispensable AA compared with low RS diets. In conclusion, pelleting diets increased AA digestibility, and pelleting diets with increased crystalline AA or RS did not affect the improvement in AA digestibility from pelleting. Diets formulated with high crystalline AA had increased SID of tryptophan. Formulating diets with high RS resulted in decreased AA digestibility compared with corn-soybean meal-based diets.


The objective of this study was to determine the effects of pelleting on the standardized ileal digestibility (SID) of amino acids (AA) in diets with or without increased concentrations of free AA and reducing sugars (RS). Treatments were arranged in a 2 × 2 × 2 factorial with the main effects of diet form (mash or pellet), crystalline AA (low or high), or RS (low or high), provided by dried distillers grains with solubles and bakery meal. A total of 8 illeal cannulated barrows were fed treatments in an 8 × 8 Latin square design. Results indicated that there was no evidence of interactions between diet types and diet form, indicating that increasing amounts of crystalline AA and RS did not reduce amino acid digestibility when pelleting diets. Additionally, pelleting diets resulted in increased amino acid digestibility compared to mash diets. Diets formulated with 20% dried distillers grains with solubles and 15% bakery resulted in decreased amino acid digestibility compared with the corn­soybean meal-based diets. Crystalline amino acid concentration did not influence amino acid digestibility of indispensable AA, except for SID of tryptophan which was increased in diets with higher concentrations of crystalline AA.


Subject(s)
Amino Acids , Digestion , Swine , Animals , Amino Acids/metabolism , Tryptophan/metabolism , Ileum/metabolism , Animal Feed/analysis , Animal Nutritional Physiological Phenomena , Diet/veterinary , Diet, Carbohydrate-Restricted/veterinary , Zea mays/chemistry
6.
Food Chem ; 435: 137534, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-37769562

ABSTRACT

The insufficient water vapor barrier and mechanical capacity of sodium alginate (SA) film limited its application in fruit preservation. Herein, cellulose nanocrystals (CNCs) were used to stabilize Pickering emulsion. Then, we prepared SA composite films. Ginger essential oil (GEO) was loaded as antimicrobials and antioxidants. Finally, the application on mangos were investigated. Compared to coarse emulsion, Pickering emulsion and its film-formation-solution showed more stable system and larger droplet size. The emulsion significantly changed the properties of SA film. Specifically, CNCs improved the thermal, tensile, and barrier properties of the film and GEO enhanced the ultraviolet-visible light barrier capacity. Additionally, the SA/CNC film possessed a homogeneous micromorphology which had a sustained-release effect on GEO, thus maintaining high postharvest quality and long-term bioavailability for mangos. In conclusion, the film prepared via Pickering emulsion showed satisfactory properties which had great potential in fruit preservation.


Subject(s)
Mangifera , Nanoparticles , Oils, Volatile , Zingiber officinale , Emulsions/chemistry , Alginates/chemistry , Delayed-Action Preparations , Fruit , Cellulose/chemistry , Nanoparticles/chemistry
7.
Crit Rev Food Sci Nutr ; : 1-23, 2023 Dec 08.
Article in English | MEDLINE | ID: mdl-38063335

ABSTRACT

For years, researchers have been tirelessly searching for efficient postharvest preservatives to ensure a sustainable and healthy supply chain of fresh fruits and vegetables. However, the effectiveness of preservatives is significantly influenced by delivery methods employed for preservatives. This work centers on delivery methods of diverse preservatives. It delves into the mechanisms of penetration and internalization that facilitate preservatives diffusion into fruits and vegetables. Furthermore, the study comprehensively reviews various delivery methods and their impact on postharvest quality of these fresh food. Methods include liquid surface impregnation (soaking, vacuum infiltration, spraying) and gaseous fumigation. Additionally, unconventional delivery measures, such as fruit stem delivery, microbubble, and edible coating, are discussed in detail for the first time. It is expected that our work will provide inspiration for future development in academia, industry, and supervision.Through a comprehensive review on preservative delivery methods in fruits and vegetables preservation, it becomes evident that majority of existing studies concentrate on the development and mechanisms of preservatives. However, a notable gap lies in comparative analysis of different delivery methods, despite the direct impact of delivery methods on preservation outcomes. Additionally, emerging delivery techniques have displayed promising potential in enhancing delivery efficiency and likewise preservation effectiveness.


Preservative delivery methods (soaking, vacuum infiltration, spraying, fumigation) directly impact their effectiveness.Delivery efficiency is linked to fruit epidermis, including cuticle, intercellular spaces, and stomata.Research uses varied delivery methods, concentrations, and times for preserving different fruits.Promising preservative delivery methods: microbubble, fruit stem delivery, and edible coating.

8.
Chemosphere ; 341: 140040, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37673188

ABSTRACT

Chronic kidney disease (CKD) is an inflammatory disease characterized by the deterioration of renal function, which imposes a significant burden on the healthcare system. In the recent decades, the ageing of the population and the increase of ozone pollution have accelerated. However, epidemiological associations between long-term ozone exposure and renal function in susceptible populations are understudied. In this study, we aimed to investigate the association of 1 y ozone exposure with renal function among the older adults in Xiamen City, China. We recruited 6024 eligible participants with a median age of 65.00 years, estimated their ozone exposure data, and collected questionnaires on demographic status and lifestyle factors as well as information on healthcare access. A generalized linear model was used to assess the association. An increase of 10 µg/m3 of 1 y ozone exposure was negatively associated with the estimated glomerular filtration rate (eGFR) [-3.12 (95% CI: -4.76, -1.48)]. The associations were stronger in men, non-smokers, and those with hypertension or T2DM. Clinical indicators of high-density lipoprotein, low-density lipoprotein, triglycerides, and total cholesterol were the main mediators to regulate the ozone-renal function association. Our results suggested that long-term ozone exposure is a potential risk factor for renal function in Chinese middle-aged and elderly adults.


Subject(s)
East Asian People , Environmental Exposure , Ozone , Renal Insufficiency, Chronic , Aged , Humans , Male , Middle Aged , Aging , Asian People , Glomerular Filtration Rate , Ozone/toxicity
9.
J Proteomics ; 289: 104995, 2023 10 30.
Article in English | MEDLINE | ID: mdl-37657716

ABSTRACT

Endometriosis is a gynecological disease related to menstruation that affects nearly 10% of reproductive-age women. However, so far, there are no reliable diagnostic biomarkers for endometriosis, causing a delay in diagnosis of 6.7 ± 6.2 years. Menstrual blood is a non-invasive source of endometrial tissue that can be analyzed for biomarkers of endometriosis. In this study, menstrual blood samples were collected from women with (n = 8) and without (n = 8) endometriosis. Data Independent Acquisition (DIA)-based mass spectrometry and bioinformatic analysis were used to quantify and identify differentially expressed proteins (DEPs) using the thresholds of fold change >1.5 and P value <0.05. A total of 95 DEPs were identified in menstrual blood from women with endometriosis compared to women without endometriosis, of which 64 were up-regulated and 31 were down-regulated. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were used to functionally annotate DEPs. Protein-protein interaction (PPI) network analysis was then conducted to identify hub genes and the MCODE plugin placed CXCL1, CXCL3, CXCL5, CCL18, and IL1RN in the most significant cluster network. The expression of the above candidate proteins was confirmed by enzyme-linked immunosorbent assay (ELISA), among which CXCL5 and IL1RN protein expression was increased in patients with endometriosis, indicating that CXCL5 and IL1RN in menstrual blood may be useful biomarkers to diagnose endometriosis from non-invasive samples. SIGNIFICANCE: Endometriosis is a common gynecological disease that causes discomfort in many women. Unfortunately, the diagnosis of endometriosis is frequently delayed due to a lack of reliable non-invasive biomarkers. To our knowledge, this is the first time that DIA-MS was used to characterize the proteome and identify the differentially expressed proteins in menstrual blood from women with endometriosis. The results, as confirmed by ELISA, showed that CXCL5 and IL1RN protein expression is significantly increased in patients with endometriosis, indicating that these proteins can be used as biomarkers for endometriosis. This study contributes to the identification of putative endometriosis biomarkers from non-invasive samples and lays the groundwork for future research into the roles of CXCL5 and IL1RN in the pathogenesis of endometriosis.


Subject(s)
Endometriosis , Humans , Female , Endometriosis/diagnosis , Proteome/metabolism , Menstruation , Biomarkers/analysis , Protein Interaction Maps , Chemokine CXCL5/metabolism , Interleukin 1 Receptor Antagonist Protein/metabolism
10.
Sci Rep ; 13(1): 14670, 2023 Sep 06.
Article in English | MEDLINE | ID: mdl-37673930

ABSTRACT

With the rapid development of computer technology, artificial intelligence and big data technology have undergone a qualitative leap, permeating into various industries. In order to fully harness the role of artificial intelligence in the field of nuclear engineering, we propose to use the LSTM algorithm in deep learning to model the BEAVRS (Benchmark for Evaluation And Validation of Reactor Simulations) core first cycle loading. The BEAVRS core is simulated by DRAGON and DONJON, the training set and the test set are arranged in a sequential fashion according to the evolution of time, and the LSTM model is constructed by changing a number of hyperparameters. In addition to this, the training set and the test set are retained in a chronological order that is different from one another throughout the whole process. Additionally, there is a significant pattern that is followed when subsetting both the training set and the test set. This pattern applies to both sets. The steps in this design are very carefully arranged. The findings of the experiments suggest that the model can be altered by making use of the appropriate hyperparameters in such a way as to bring the maximum error of the effective multiplication factor keff prediction of the core within 2.5 pcm (10-5), and the average error within 0.5266 pcm, which validated the successful application of machine learning to transport equations.

11.
Reprod Biomed Online ; 47(4): 103249, 2023 10.
Article in English | MEDLINE | ID: mdl-37495470

ABSTRACT

RESEARCH QUESTION: What is the effect of tubal endometriosis on tubal epithelial ultrastructure and is there a differential expression of exosomal microRNAs (miRNAs) in tubal fluid which may affect tubal infertility? DESIGN: Human fallopian tube epithelium and tubal fluid samples were obtained from patients with and without tubal endometriosis. Scanning electron microscopy and transmission electron microscopy were used to assess ultrastructural changes. Exosomal miRNAs in tubal fluid were extracted for microarray. RESULTS: Epithelial damage was visualized in the tubal endometriosis group using electron microscopy. The number of organelles decreased (P = 0.0314), and organelle structure was destroyed. A total of 14 differentially expressed exosomal miRNAs were detected in tubal fluid (fold change >2 and P < 0.05). Four miRNAs (miR-1273f, miR-5699-5p, miR-6087 and miR-6747-5p) were validated by quantitative real-time polymerase chain reaction. Bioinformatic analysis showed that most of the target genes participated in embryo transport, regulation of cell communication, anatomical structure morphogenesis and immune system processes. CONCLUSIONS: Tubal endometriosis results in damage to the tubal epithelial ultrastructure in human specimens and the presence of differentially expressed exosomal miRNAs in tubal liquid. These findings help to clarify the pathogenesis of tubal endometriosis-associated infertility and the mechanisms driving tubal epithelial ultrastructure damage in tubal endometriosis.


Subject(s)
Endometriosis , Infertility , MicroRNAs , Female , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Endometriosis/metabolism , Infertility/complications
12.
Biomed Pharmacother ; 164: 114964, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37269815

ABSTRACT

Osteoarthritis (OA) is an age-related joint disease in which inflammation and extracellular matrix (ECM) degradation play a crucial role in the destruction of articular cartilage. Secoisolariciresinol diglucoside (SDG), the main lignan in wholegrain flaxseed, which has been reported to remarkably suppress inflammation and oxidative stress, may have potential therapeutic value in OA. In this study, the effect and mechanism of SDG against cartilage degeneration were verified in the destabilization of the medial meniscus (DMM) and collagen-induced (CIA) arthritis models and interleukin-1ß (IL-1ß)-stimulated osteoarthritis chondrocyte models. From our experiments, SDG treatment downregulated the expression of pro-inflammatory factors induced by IL-1ß in vitro, including inducible nitric oxide synthase (INOS), cyclooxygenase-2 (COX2), tumor necrosis factor (TNF-α), and interleukin 6 (IL-6). Additionally, SDG promoted the expression of collagen II (COL2A1) and SRY-related high-mobility-group-box gene 9(SOX9), while suppressing the expression of a disintegrin and metalloproteinase with thrombospondin motifs 5(ADAMTS5) and matrix metalloproteinases 13(MMP13), which leads to catabolism. Consistently, in vivo, SDG has been identified to have chondroprotective effects in DMM-induced and collagen-induced arthritis models. Mechanistically, SDG exerted its anti-inflammation and anti-ECM degradation effects by activating the Nrf2/HO-1 pathway and inhibiting the nuclear factor kappa B (NF-κB) pathway. In conclusion, SDG ameliorates the progression of OA via the Nrf2/NF-κB pathway, which indicates that SDG may have therapeutic potential for OA.


Subject(s)
NF-kappa B , Osteoarthritis , Humans , NF-kappa B/metabolism , Signal Transduction , NF-E2-Related Factor 2/metabolism , Osteoarthritis/metabolism , Inflammation/metabolism , Interleukin-6/metabolism , Interleukin-1beta/metabolism , Chondrocytes/metabolism , Cyclooxygenase 2/metabolism
13.
Cell Rep ; 42(6): 112546, 2023 06 27.
Article in English | MEDLINE | ID: mdl-37224015

ABSTRACT

Ruptured ectopic pregnancy (REP), a pregnancy complication caused by aberrant implantation, deep invasion, and overgrowth of embryos in fallopian tubes, could lead to rupture of fallopian tubes and accounts for 4%-10% of pregnancy-related deaths. The lack of ectopic pregnancy phenotypes in rodents hampers our understanding of its pathological mechanisms. Here, we employed cell culture and organoid models to investigate the crosstalk between human trophoblast development and intravillous vascularization in the REP condition. Compared with abortive ectopic pregnancy (AEP), the size of REP placental villi and the depth of trophoblast invasion are correlated with the extent of intravillous vascularization. We identified a key pro-angiogenic factor secreted by trophoblasts, WNT2B, that promotes villous vasculogenesis, angiogenesis, and vascular network expansion in the REP condition. Our results reveal the important role of WNT-mediated angiogenesis and an organoid co-culture model for investigating intricate communications between trophoblasts and endothelial/endothelial progenitor cells.


Subject(s)
Pregnancy, Ectopic , Trophoblasts , Pregnancy , Humans , Female , Placenta/pathology , Pregnancy, Ectopic/pathology , Embryo Implantation , Organoids
14.
Gastric Cancer ; 26(4): 504-516, 2023 07.
Article in English | MEDLINE | ID: mdl-36930369

ABSTRACT

BACKGROUND: Peritoneal metastasis (PM) frequently occurs in patients with gastric cancer (GC) and is a major cause of mortality. Risk stratification for PM can optimize decision making in GC treatment. METHODS: A total of 25 GC patients (13 with synchronous, 6 with metachronous PM and 6 PM-free) were included in this study. Quantitative proteomics by high-depth tandem mass tags labeling and whole-exome sequencing were conducted in primary GC and PM samples. Proteomic signature and prognostic model were established by machine learning algorithms in PM and PM-free GC, then validated in two external cohorts. Tumor-infiltrating immune cells in GC were analyzed by CIBERSORT. RESULTS: Heterogeneity between paired primary and PM samples was observed at both genomic and proteomic levels. Compared to primary GC, proteome of PM samples was enriched in RNA binding and extracellular exosomes. 641 differently expressed proteins (DEPs) between primary GC of PM group and PM-free group were screened, which were enriched in extracellular exosome and cell adhesion pathways. Subsequently, a ten-protein signature was derived based on DEPs by machine learning. This signature was significantly associated with patient prognosis in internal cohort and two external proteomic datasets of diffuse and mixed type GC. Tumor-infiltrating immune cell analysis showed that the signature was associated with immune microenvironment of GC. CONCLUSIONS: We characterized proteomic features that were informative for PM progression of GC. A protein signature associated with immune microenvironment and patient outcome was derived, and it could guide risk stratification and individualized treatment.


Subject(s)
Peritoneal Neoplasms , Stomach Neoplasms , Humans , Stomach Neoplasms/genetics , Proteomics , Peritoneal Neoplasms/genetics , Peritoneum , Genomics , Tumor Microenvironment
15.
Food Chem ; 414: 135689, 2023 Jul 15.
Article in English | MEDLINE | ID: mdl-36809727

ABSTRACT

Water loss and microbial infection induced by mechanical injury are the main sources of harvested loss of fruits and vegetables. Plenty studies have shown that regulating phenylpropane-related metabolic pathways can effectively accelerate wound healing. The combination treatment of chlorogenic acid and sodium alginate coating on postharvest wound healing of pear fruit were investigated in this work. The result shows combination treatment reduced weight loss and disease index of the pears, enhanced texture of healing tissues, maintained the integrity of cell membrane system. Moreover, chlorogenic acid increased the content of total phenols and flavonoids, and ultimately leads to the accumulation of suberin poly phenolic (SPP) and lignin around wound cell wall. Activities of phenylalanine metabolism-related enzymes (PAL, C4H, 4CL, CAD, POD and PPO) in wound-healing tissue were enhanced. The contents of major substrates such as trans-cinnamic, p-coumaric, caffeic, and ferulic acids also increased. The presented results suggested that the combination treatment of chlorogenic acid and sodium alginate coating stimulated wound healing in pears by elevating the phenylpropanoid metabolism pathway, so that maintain high postharvest fruit quality.


Subject(s)
Chlorogenic Acid , Pyrus , Chlorogenic Acid/analysis , Fruit/chemistry , Pyrus/metabolism , Alginates/metabolism , Phenols/analysis , Metabolic Networks and Pathways
16.
Food Chem ; 413: 135579, 2023 Jul 01.
Article in English | MEDLINE | ID: mdl-36750005

ABSTRACT

A sensitive electrochemical method for detecting enrofloxacin was proposed using carboxylated multi-walled carbon nanotubes-reduced graphene oxide (MWCNT-COOH-RGO) nanocomposites. The MWCNT-COOH-RGO nanocomposites were firstly electrodeposited on a bare electrode, followed by electropolymerization of molecularly imprinted polymers. Enrofloxacin was determined by the mechanisms of direct electrocatalytic oxidation and molecularly imprinted recognition, respectively. Under the optimized conditions, a response range of 5.0×10-7 M to 5.5×10-5 M and limit of detection (LOD) of 2.3×10-7 M were obtained by direct electrocatalytic oxidation of enrofloxacin using chronoamperometry. By contrast, the response range of 1.0×10-10 M to 5.0×10-5 M and LOD of 2.5×10-11 M were achieved by molecularly imprinted recognition of enrofloxacin using square-wave voltammetry. Moreover, the proposed method exhibited good repeatability, stability and selectivity, and could be used for enrofloxacin detection in egg samples with satisfactory results.


Subject(s)
Graphite , Molecular Imprinting , Nanocomposites , Nanotubes, Carbon , Enrofloxacin , Oxidation-Reduction , Electrodes , Electrochemical Techniques/methods , Limit of Detection
17.
Cell Prolif ; 56(7): e13408, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36721079

ABSTRACT

Tubal ectopic pregnancy (TEP) occurs when an embryo aberrantly implants in the fallopian tube, leading to abortive or ruptured tubal ectopic pregnancy (AEP or REP). Poor outcomes of REP include maternal infertility or mortality. Current studies on the prevention and treatment of ruptured tubal ectopic pregnancy (REP) are unfortunately hampered by a lack of the cell spectrum and cell-cell communications in the maternal-foetal interface. Here, we investigate the mechanisms of tubal rupture through single-cell transcriptome profiling of the fallopian tube-trophoblast interface in REP, AEP and intrauterine pregnancy patients. In REP, extravillous trophoblast (EVTs) cells form a dominant cell population, displaying aggressive invasion and proliferation, with robust differentiation into three subsets. Cell communication analysis identified colony-stimulating factor 1 (CSF1), overexpressed by fallopian tube secretory epithelial cells in REP, with CSF1R on EVTs and macrophages, as a ligand/receptor pair that stimulates EVT invasion and macrophage accumulation. CSF1+ secretory epithelial cells stimulate EVTs migration and invasion, leading to a tubal rupture in REP. These results provide a mechanistic context and cellular milieu leading to tubal rupture, facilitating further study and development of therapeutics for REP in early pregnancy.


Subject(s)
Pregnancy, Tubal , Trophoblasts , Pregnancy , Female , Humans , Macrophage Colony-Stimulating Factor , Fallopian Tubes , Epithelial Cells
18.
Food Chem ; 414: 135662, 2023 Jul 15.
Article in English | MEDLINE | ID: mdl-36808021

ABSTRACT

Propolis, as a natural active substance, is rich in polyphenols, with low toxicity, antioxidant, antifungal and antibacterial properties, which can be applied to the post-harvest preservation of fruits and vegetables. Propolis extracts and propolis functionalized coatings and films have exhibited good freshness in various types of fruits and vegetables as well as fresh-cut vegetables. They are mainly used to prevent water loss after harvesting, to inhibit the infestation of bacteria and fungi after harvesting and to enhance the firmness and apparent quality of fruits and vegetables. Moreover, propolis and propolis functionalized composites have a small or even insignificant effect on the physicochemical parameters of fruits and vegetables. Furthermore, how to cover the special smell of propolis itself so that it does not affect the flavor of fruits and vegetables, and the application of propolis extract in wrapping paper and packaging bag of fruits and vegetables, are worthwhile to further investigate.


Subject(s)
Propolis , Vegetables , Vegetables/chemistry , Propolis/chemistry , Food Preservation , Fruit/chemistry , Anti-Bacterial Agents/chemistry
19.
Int J Gynaecol Obstet ; 162(1): 256-265, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36607245

ABSTRACT

OBJECTIVE: To explore the factors associated with trophoblastic infiltration in ampullary pregnancy from the perspective of clinical and pathologic characteristics. METHODS: A single-center, retrospective, clinicopathologic cohort study was conducted in women who were diagnosed with tubal pregnancy and underwent salpingectomy in the International Peace Maternal and Child Health Care Hospital from January 2018 to June 2021. RESULTS: A total of 333 eligible women diagnosed with ampullary pregnancy were included in the analysis. Multivariate logistic analysis showed that preoperative ß-human chorionic gonadotropin greater than 3000 IU/L (adjusted odds ratio [aOR] 3.77, 95% confidence interval [CI] 2.02-7.03), and vascular remodeling phenomenon (aOR 4.34, 95% CI 2.41-7.83) were positively correlated with the infiltration of extravillous trophoblasts into serosa, while presence of chronic inflammation of the fallopian tube was a negatively corellated factor (aOR 0.49, 95% CI 0.29-0.85). CONCLUSION: The depth of trophoblastic infiltration in tubal pregnancy may be related to the presence of chronic inflammation in the fallopian tube. A tubal pregnancy in a tube with chronic salpingitis is more likely to develop into an abortive ectopic pregnancy; whereas in a fallopian tube without chronic inflammation, the risk of it developing into a ruptured ectopic pregnancy increases. Hence, early identification is needed to properly address this dangerous pregnancy situation.


Subject(s)
Pregnancy, Ectopic , Pregnancy, Tubal , Pregnancy , Child , Female , Humans , Fallopian Tubes/pathology , Retrospective Studies , Trophoblasts/pathology , Cohort Studies , Pregnancy, Tubal/epidemiology , Pregnancy, Tubal/surgery , Pregnancy, Ectopic/surgery , Inflammation/pathology
20.
Food Chem ; 404(Pt A): 134427, 2023 Mar 15.
Article in English | MEDLINE | ID: mdl-36240565

ABSTRACT

In this work, Zirconium-based metal-organic frameworks (MOFs), UiO-66-NH2, were designed as loading carriers for thymol and carvacrol and added into chitosan to construct antimicrobial packaging films. Scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), and thermogravimetric analysis (TGA) were applied to characterize the films. Besides, we analyzed the physical properties, mechanical performance, hydrophobicity, release behavior, and antimicrobial capacity of the films. It can be clearly seen that the addition of thymol and carvacrol loaded MOFs into chitosan film significantly improved the thermal stability, light barrier properties, tensile strength, and hydrophobicity. Importantly, UiO-66-NH2 restrained the release rate of thymol and carvacrol compared with pure chitosan film, which endowed efficient antimicrobial capacity against E. coli, S. aureus, and P. citrinum to chitosan films. Overall, the strategy conceived here can be a superior candidate to develop a premium antimicrobial material for active food packaging, which has potential application prospects.


Subject(s)
Anti-Infective Agents , Chitosan , Nanocomposites , Food Packaging/methods , Thymol/pharmacology , Chitosan/chemistry , Staphylococcus aureus , Spectroscopy, Fourier Transform Infrared , Escherichia coli , Delayed-Action Preparations , Nanocomposites/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...