Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 60
Filter
1.
Clin Transl Med ; 14(5): e1660, 2024 May.
Article in English | MEDLINE | ID: mdl-38764260

ABSTRACT

BACKGROUND: Human dermal fibroblasts (HDFs) are essential in the processes of skin ageing and wound healing. However, the underlying mechanism of HDFs in skin healing of the elderly has not been well defined. This study aims to elucidate the mechanisms of HDFs senescence and how senescent HDFs affect wound healing in aged skin. METHODS: The expression and function of sperm equatorial segment protein 1 (SPESP1) in skin ageing were evaluated via in vivo and in vitro experiments. To delve into the potential molecular mechanisms by which SPESP1 influences skin ageing, a combination of techniques was employed, including proteomics, RNA sequencing, immunoprecipitation, chromatin immunoprecipitation and liquid chromatography-mass spectrometry analyses. Clearance of senescent cells by dasatinib plus quercetin (D+Q) was investigated to explore the role of SPESP1-induced senescent HDFs in wound healing. RESULTS: Here, we define the critical role of SPESP1 in ameliorating HDFs senescence and retarding the skin ageing process. Mechanistic studies demonstrate that SPESP1 directly binds to methyl-binding protein, leading to Decorin demethylation and subsequently upregulation of its expression. Moreover, SPESP1 knockdown delays wound healing in young mice and SPESP1 overexpression induces wound healing in old mice. Notably, pharmacogenetic clearance of senescent cells by D+Q improved wound healing in SPESP1 knockdown skin. CONCLUSIONS: Taken together, these findings reveal the critical role of SPESP1 in skin ageing and wound healing, expecting to facilitate the development of anti-ageing strategies and improve wound healing in the elderly.


Subject(s)
Cellular Senescence , Fibroblasts , Wound Healing , Animals , Fibroblasts/metabolism , Fibroblasts/drug effects , Wound Healing/drug effects , Mice , Cellular Senescence/drug effects , Down-Regulation/drug effects , Skin Aging/drug effects , Humans , Quercetin/pharmacology , Male
2.
Clin Exp Dermatol ; 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38648509

ABSTRACT

BACKGROUND: Elderly-onset seborrheic dermatitis (SD) seriously affects the quality of life. However, associations between air pollution exposures and elderly-onset SD incidence have not been elucidated. OBJECTIVES: Investigate air pollution's role in the incidence of elderly-onset SD. METHODS: We engaged a prospective cohort analysis utilizing the UK Biobank database. Exposure data for specific air pollutants (PM2.5, PM2.5-10, NOX, NO2, and PM10) spanning various years was incorporated. Through a composite air pollution score constructed from five pollutants and employing Cox proportional hazards models, the relationship between pollution and SD was delineated. RESULTS: Our examination of 193,995 participants identified 3,363 SD cases. Higher concentrations of specific pollutants, particularly in the upper quartile (Q4), were significantly linked to an elevated SD risk. Notably, PM2.5, PM10, NO2, and NOX exhibited hazard ratios of 1.11, 1.15, 1.22, and 1.15, respectively. The correlation was further solidified with a positive association between air pollution score increments and SD onset. Intriguingly, this association was accentuated in certain demographics, including younger males, the socioeconomically deprived, smokers, daily alcohol consumers, and those engaging in regular physical activity. CONCLUSIONS: Our findings revealed that air pollution exposures were associated with elderly-onset SD incidence. These results emphasize the importance of preventing environmental exposures to the risk of SD development.

3.
Life Sci ; 347: 122675, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38688383

ABSTRACT

AIMS: Rosacea is an inflammatory skin disease with immune and vascular dysfunction. Although there are multiple treatment strategies for rosacea, the clinical outcomes are unsatisfactory. MAIN METHODS: Combining transcriptome data and the Connectivity Map database quercetin was identified as a novel candidate for rosacea. Next, the therapeutic efficacy of quercetin was substantiated through proteomic analyses, in vivo experiments, and in vitro assays. Additionally, the utilization of DARTS, molecular docking and experimental verification revealed the therapeutic mechanisms of quercetin. KEY FINDINGS: Treatment with quercetin resulted in the following effects: (i) it effectively ameliorated rosacea-like features by reducing immune infiltration and angiogenesis; (ii) it suppressed the expression of inflammatory mediators in HaCaT cells and HDMECs; (iii) it interacted with p65 and ICAM-1 directly, and this interaction resulted in the repression of NF-κB signal and ICAM-1 expression in rosacea. SIGNIFICANCE: We show for the first time that quercetin interacted with p65 and ICAM-1 directly to alleviated inflammatory and vascular dysfunction, suggesting quercetin is a novel, promising therapeutic candidate for rosacea.


Subject(s)
Inflammation , Intercellular Adhesion Molecule-1 , Quercetin , Rosacea , Transcription Factor RelA , Quercetin/pharmacology , Intercellular Adhesion Molecule-1/metabolism , Rosacea/drug therapy , Rosacea/metabolism , Humans , Inflammation/drug therapy , Inflammation/metabolism , Transcription Factor RelA/metabolism , Animals , Molecular Docking Simulation , Mice , Female , Male
4.
Int J Biol Sci ; 20(5): 1763-1777, 2024.
Article in English | MEDLINE | ID: mdl-38481803

ABSTRACT

N6-methyladenosine (m6A), the most prevalent posttranscriptional RNA modification, involved in various diseases and cellular processes. However, the underlying mechanisms of m6A regulation in skin aging are still not fully understood. In this study, proteomics analysis revealed a significant correlation between Wilms' tumor 1-associating protein (WTAP) expression and cellular senescence. Next, upregulated WTAP was detected in aging skin tissues and senescent human dermal fibroblasts (HDFs). Functionally, overexpressed WTAP induced senescence and knockdown of WTAP rescued senescence of HDFs. Mechanistically, WTAP directly targeted ELF3 and promoted its expression in an m6A-dependent manner. Exogenous-ELF3 overexpression evidently reversed shWTAP-suppressed fibroblast senescence. Furthermore, ELF3 induced IRF8-mediated senescence-associated secretory phenotype (SASP) by binding to the (-817 to -804) site of the IRF8 promoter directly. In vivo, overexpression of WTAP evidently increased senescence cells in skin and induced skin aging. In summary, these findings revealed the critical role of WTAP-mediated m6A modification in skin aging and identified ELF3 as an important target of m6A modification in HDFs senescence, providing a new idea for delaying the aging process.


Subject(s)
Cellular Senescence , Senescence-Associated Secretory Phenotype , Humans , Adenosine , Cell Cycle Proteins , Cellular Senescence/genetics , DNA-Binding Proteins , Interferon Regulatory Factors , Proto-Oncogene Proteins c-ets , RNA , RNA Splicing Factors , Transcription Factors
5.
Medicine (Baltimore) ; 103(11): e37496, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38489709

ABSTRACT

CD8+ T cells have great roles in tumor suppression and elimination of various tumors including hepatocellular carcinoma (HCC). Nonetheless, potential prognostic roles of CD8+ T cell-related genes (CD8Gs) in HCC remains unknown. In our study, 416 CD8Gs were identified in HCC, which were enriched in inflammatory and immune signaling pathways. Using The Cancer Genome Atlas dataset, a 5-CD8Gs risk model (KLRB1, FYN, IL2RG, FCER1G, and DGKZ) was constructed, which was verified in International Cancer Genome Consortium and gene expression omnibus datasets. Furthermore, we found that overall survival was independently correlated with the CD8Gs signature, and it was associated with immune- and cancer-related signaling pathways and immune cells infiltration. Finally, drug sensitivity data indicated that 10 chemotherapeutic drugs held promise as therapeutics for HCC patients with high-risk. In conclusion, multi-databases analysis showed that 5-CD8Gs and their signature could be an indicator to predict candidate drugs for HCC therapy.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/genetics , Prognosis , Liver Neoplasms/genetics , CD8-Positive T-Lymphocytes , Biomarkers
6.
J Dermatol ; 51(6): 791-798, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38421898

ABSTRACT

Rosacea is a chronic inflammatory skin disease. Systemic inflammation plays a vital role in the pathogenesis of rosacea. Many studies have reported hematological parameters as biomarkers for diseases with inflammatory processes. However, the diagnostic value of hematological parameters in rosacea remains a puzzle. This study involved 462 patients with rosacea, including erythematotelangiectatic rosacea (ETR, n = 179), papulopustular rosacea (PPR, n = 250), and phymatous rosacea (PhR, n = 33), and 924 healthy control subjects. Demographic, clinical, and laboratory information was collected and compared between rosacea subtypes. The hematological parameters of the patients and the healthy controls were compared retrospectively. The platelet volume (MPV) and platelet crit (PCT) were significantly upregulated, and the lower red cell distribution width (RDW) was significantly downregulated in rosacea compared to healthy controls, and they were identified as the diagnostic biomarkers for rosacea with area under the curve values of 0.828, 0.742, and 0.787, respectively. Comparing the hematological parameters among the three rosacea subtypes, we found that platelet-to-lymphocyte ratio and platelet-to-neutrophil ratio values in the ETR group were significantly higher than those in the PPR and PhR groups. The correlation between hematological parameters and clinical scores showed that RDW was negatively correlated with the Clinician Erythema Assessment score. However, there was no significant correlation between the Investigator Global Assessment score and hematological parameters. In conclusion, PCT, MPV, and RDW have diagnostic value for rosacea, and RDW is correlated with the severity of rosacea erythema, implying the potential applications of PCT, MPV, and RDW in the diagnosis and monitoring of rosacea.


Subject(s)
Biomarkers , Erythrocyte Indices , Rosacea , Humans , Rosacea/diagnosis , Rosacea/blood , Male , Female , Middle Aged , Adult , Biomarkers/blood , Retrospective Studies , Case-Control Studies , Mean Platelet Volume , Aged , Young Adult , Blood Platelets , Neutrophils
7.
Redox Biol ; 70: 103055, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38290385

ABSTRACT

Nanozymes with superior antioxidant properties offer new hope for treating oxidative stress-related inflammatory skin diseases. However, lacking sufficient catalytic activity or having complex material designs limit the application of current metallic nanozymes in inflammatory skin diseases. Here, we report a simple and effective twin-defect platinum nanowires (Pt NWs) enzyme with multiple mimetic enzymes and broad-spectrum ROS scavenging capability for the treatment of inflammatory skin diseases in mice (including psoriasis and rosacea). Pt NWs with simultaneous superoxide dismutase, glutathione peroxidase and catalase mimetic enzyme properties exhibit cytoprotective effects against ROS-mediated damage at extremely low doses and significantly improve treatment outcomes in psoriasis- and rosacea-like mice. Meanwhile, these ultrasmall sizes of Pt NWs allow the nanomaterials to effectively penetrate the skin and do not produce significant biotoxicity. Therefore, Pt NWs have potential applications in treating diseases related to oxidative stress or inflammation.


Subject(s)
Dermatitis , Nanowires , Psoriasis , Rosacea , Animals , Mice , Reactive Oxygen Species , Antioxidants/pharmacology
8.
Exp Dermatol ; 33(1): e14812, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37086043

ABSTRACT

Rosacea is a complex chronic inflammatory skin disorder with high morbidity. Pyroptosis is known as a regulated inflammatory cell death. While its association with immune response to various inflammatory disorders is well established, little is known about its functional relevance of rosacea. So, we aimed to explore and enrich the pathogenesis involved in pyroptosis-related rosacea aggravations. In this study, we evaluated the pyroptosis-related patterns of rosacea by consensus clustering analysis of 45 ferroptosis-related genes (FRGs), with multiple immune cell infiltration analysis to identify the pyroptosis-mediated immune response in rosacea using GSE65914 dataset. The co-co-work between PRGs and WGCNA-revealed hub genes has established using PPI network. FRG signature was highlighted in rosacea using multi-transcriptomic and experiment analysis. Based on this, three distinct pyroptosis-related rosacea patterns (non/moderate/high) were identified, and the notably enriched pathways have revealed through GO, KEGG and GSEA analysis, especially immune-related pathways. Also, the XCell/MCPcount/ssGSEA/Cibersort underlined the immune-related signalling (NK cells, Monocyte, Neutrophil, Th2 cells, Macrophage), whose hub genes were identified through WGCNA (NOD2, MYD88, STAT1, HSPA4, CXCL8). Finally, we established a pyroptosis-immune co-work during the rosacea aggravations. FRGs may affect the progression of rosacea by regulating the immune cell infiltrations. In all, pyroptosis with its mediated immune cell infiltration is a critical factor during the development of rosacea.


Subject(s)
Pyroptosis , Rosacea , Humans , Pyroptosis/genetics , Rosacea/genetics , Skin , Adaptor Proteins, Signal Transducing , Gene Expression Profiling
9.
J Invest Dermatol ; 144(1): 33-42.e2, 2024 01.
Article in English | MEDLINE | ID: mdl-37437773

ABSTRACT

Recent efforts have described the transcriptomic landscape of rosacea. However, little is known about its proteomic characteristics. In this study, the proteome and phosphoproteome of lesional skin, paired nonlesional skin, and healthy skin were analyzed by liquid chromatography coupled with tandem mass spectrometry. The molecular characteristics and potential pathogenic mechanism of rosacea were demonstrated by integrating the proteome, phosphoproteome, and previous transcriptome. The proteomic data revealed a significant upregulation of inflammation- and axon extension-related proteins in lesional skin and nonlesional skin versus in healthy skin, implying an inflammatory and nerve-hypersensitive microenvironment in rosacea skin. Of these, axon-related proteins (DPYSL2 and DBNL) were correlated with the Clinician's Erythema Assessment score, and neutrophil-related proteins (ELANE and S100A family) were correlated with the Investigator's Global Assessment score. Moreover, comorbidity-related proteins were differentially expressed in rosacea; of these, SNCA was positively correlated with Clinician's Erythema Assessment score, implying a potential correlation between rosacea and comorbidities. Subsequently, the integrated proteome and transcriptome demonstrated consistent immune disturbances at both the transcriptional and protein levels. The integrative analysis of the proteome and phosphoproteome revealed the key transcription factor network and kinase network that drive the dysregulation of immunity and vasculature in rosacea. In conclusion, our multiomics analysis enables more comprehensive insight into rosacea and offers an opportunity for, to our knowledge, previously unreported treatment strategies.


Subject(s)
Proteome , Rosacea , Humans , Multiomics , Proteomics , Rosacea/metabolism , Erythema
10.
Medicine (Baltimore) ; 102(34): e34741, 2023 Aug 25.
Article in English | MEDLINE | ID: mdl-37653738

ABSTRACT

Cuproptosis, an unusual type of programmed cell death mechanism of cell death, involved the disruption of specific mitochondrial metabolic enzymes in the occurrence and development of tumors. However, it was still unclear how the relationship between cuproptosis-related genes (CRGs) may contribute to hepatocellular carcinoma (HCC) potential the prognosis of HCC remained limited. Here, the landscape of 14 CRGs in HCC was evaluated using the Cancer Genome Atlas and International Cancer Genome Consortium datasets. And then, 4 CRGs (ATP7A, MTF1, GLS, and CDKN2A) were screened for the construction of risk signatures for prognosis and drug therapy. The HCC patients with CRGs high-risk showed poor prognosis than those with low risk. Moreover, the CRGs risk signature was shown to be an independent prognostic factor and associated with the immune microenvironment in HCC. Meanwhile, we constructed and verified a prognostic model based on cuproptosis-related lncRNAs (Cr-lncRNAs). We obtained 291 Cr-lncRNAs and constructed Cr-lncRNA prognosis signature based on 3 key Cr-lncRNAs (AC026356.1, NRAV, AL031985.3). The Cr-lncRNA prognosis signature was also an independent prognostic factor and associated with the immune microenvironment in HCC. Finally, the drug sensitivity database showed that 8 candidate drugs related to CRGs signature and Cr-lncRNAs signature. In summary, we evaluated and validated the CRGs and Cr-lncRNAs as potential predictive markers for prognosis, immunotherapy, and drug candidate with the personalized diagnosis and treatment of HCC.


Subject(s)
Carcinoma, Hepatocellular , Copper , Liver Neoplasms , RNA, Long Noncoding , Humans , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/therapy , Immunotherapy , Liver Neoplasms/genetics , Liver Neoplasms/therapy , Prognosis , Tumor Microenvironment/genetics , Apoptosis
11.
Nat Commun ; 14(1): 3958, 2023 07 05.
Article in English | MEDLINE | ID: mdl-37402769

ABSTRACT

Rosacea is a chronic inflammatory skin disorder with high incidence rate. Although genetic predisposition to rosacea is suggested by existing evidence, the genetic basis remains largely unknown. Here we present the integrated results of whole genome sequencing (WGS) in 3 large rosacea families and whole exome sequencing (WES) in 49 additional validation families. We identify single rare deleterious variants of LRRC4, SH3PXD2A and SLC26A8 in large families, respectively. The relevance of SH3PXD2A, SLC26A8 and LRR family genes in rosacea predisposition is underscored by presence of additional variants in independent families. Gene ontology analysis suggests that these genes encode proteins taking part in neural synaptic processes and cell adhesion. In vitro functional analysis shows that mutations in LRRC4, SH3PXD2A and SLC26A8 induce the production of vasoactive neuropeptides in human neural cells. In a mouse model recapitulating a recurrent Lrrc4 mutation from human patients, we find rosacea-like skin inflammation, underpinned by excessive vasoactive intestinal peptide (VIP) release by peripheral neurons. These findings strongly support familial inheritance and neurogenic inflammation in rosacea development and provide mechanistic insight into the etiopathogenesis of the condition.


Subject(s)
Neurogenic Inflammation , Rosacea , Animals , Mice , Humans , Whole Genome Sequencing , Mutation , Genetic Predisposition to Disease , Rosacea/genetics , Nerve Tissue Proteins/genetics
12.
Am J Transl Res ; 15(6): 4203-4227, 2023.
Article in English | MEDLINE | ID: mdl-37434816

ABSTRACT

OBJECTIVES: To evaluate the role and biological function of nucleic acid binding protein 2 (NABP2) in hepatocellular carcinoma (HCC). METHODS: Our study was based on comprehensive bioinformatics methods and functional analysis experiments using HCC cells to reveal the expression of NABP2, the prognostic role of NABP2, the relationship between NABP2 and the infiltration of immune cells and the expression of immune-related cytokines, potential effective drugs against HCC, and the biological function of NABP2 in HCC. RESULTS: Our results indicated that NABP2 expression was markedly elevated in HCC, which suggested a worse prognosis and shorter survival time in HCC patients. Moreover, NABP2 was an independent prognostic factor and was associated with cancer-related signal pathways in HCC. Further functional analysis showed that knockdown of NABP2 dramatically inhibited proliferation and migration, and promoted apoptosis of HCC cells. Subsequently, we identified NABP2-related genes and NABP2-related clusters. Next, we constructed a NABP2-related risk signature based on differentially expressed genes that were responsible for NABP2-related clusters. We found that the risk signature was an independent prognostic factor for patients with HCC that was associated with dysregulated immune infiltration. Finally, drug sensitivity analysis revealed eight potentially effective drugs for beneficial treatment options for HCC patients with high-risk scores. CONCLUSIONS: These findings indicated that NABP2 is a prognostic biomarker and therapeutic target for HCC, and a NABP2-related risk signature could guide clinicians to judge the prognosis and suggest drug treatments for HCC patients.

13.
Front Pharmacol ; 14: 1092473, 2023.
Article in English | MEDLINE | ID: mdl-36937834

ABSTRACT

Background: Rosacea is a common facial skin inflammatory disease featured by hyperactivation of mTORC1 signaling in the epidermis. Due to unclear pathogenesis, the effective treatment options for rosacea remain limited. Methods: Weighted gene co-expression network analysis (WGCNA) analyzed the relationship between epidermis autophagy and mTOR pathways in rosacea, and further demonstrated it through immunofluorescence and qPCR analysis. A potential therapeutic agent for rosacea was predicted based on the key genes of the WGCNA module. In vivo and in vitro experiments were conducted to verify its therapeutic role. Drug-target prediction (TargetNet, Swiss, and Tcmsp) and molecular docking offered potential pharmacological targets. Results: WGCNA showed that epidermis autophagy was related to the activation of mTOR pathways in rosacea. Next, autophagy was downregulated in the epidermis of rosacea, which was regulated by mTOR. In addition, the in vivo experiment demonstrated that autophagy induction could be an effective treatment strategy for rosacea. Subsequently, based on the key genes of the WGCNA module, epigallocatechin-3-gallate (EGCG) was predicted as a potential therapeutic agent for rosacea. Furthermore, the therapeutic role of EGCG on rosacea was confirmed in vivo and in vitro. Finally, drug-target prediction and molecular docking revealed that AKT1/MAPK1/MMP9 could be the pharmacological targets of EGCG in rosacea. Conclusion: Collectively, our findings revealed the vital role of autophagy in rosacea and identified that EGCG, as a therapeutic agent for rosacea, attenuated rosacea-like inflammation via inducing autophagy in keratinocytes.

14.
J Eur Acad Dermatol Venereol ; 37(4): 796-809, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36367676

ABSTRACT

BACKGROUND: Rosacea is a chronic inflammatory skin disease with increased macrophage infiltration. However, the molecular mechanism remains unclear. OBJECTIVES: To determine the significance of macrophage infiltration, and the correlation between Guanylate-binding protein 5 (GBP5) and polarization of macrophages in rosacea-like inflammation. METHODS: Here we tested the hypothesis that Guanylate-binding protein 5 (GBP5) aggravates rosacea-like skin inflammation by promoting the polarization of the M1 macrophages through the NF-κB signalling pathway. We depleted macrophage by injecting clodronate-containing liposomes. We next explored the association between GBP5 and macrophage in rosacea tissue through transcriptome analysis and immunofluorescence analysis. We evaluated the severity of rosacea-like skin inflammation when BALB/c mice were injected with GBP5 siRNA intradermally daily for three consecutive days. At last, to study the causality of knocking down GBP5-blunted M1 macrophage polarization, THP-1 cell was treated with GBP5 siRNA. RESULTS: Macrophage depletion ameliorated rosacea-like skin inflammation in mice, implying the important role of macrophages in rosacea. Based on the transcriptome analysis, Guanylate-binding protein 5 (GBP5) was identified as hub gene that was associated with macrophage infiltration in rosacea. Next, we found that GBP5 expression was significantly upregulated in rosacea tissues and positively correlated with macrophage infiltration, the immunofluorescence analysis revealed the co-localization between GBP5 and macrophages. In vivo, silencing of GBP5 attenuated rosacea-like skin inflammation in the LL-37-induced mouse model and suppressed the expression of M1 signature genes such as IL-6, iNOS and TNF-a. In vitro, knocking down GBP5 significantly blunted the polarization of the M1 macrophages partly by repressing the activation of the NF-κB signalling pathways. CONCLUSIONS: Together, our study revealed the important role of macrophages in rosacea and identified GBP5 as a key regulator of rosacea by inducing M1 macrophage polarization via NF-κB signalling pathways.


Subject(s)
GTP-Binding Proteins , NF-kappa B , Rosacea , Animals , Mice , Dermatitis/genetics , Dermatitis/metabolism , GTP-Binding Proteins/genetics , GTP-Binding Proteins/metabolism , Inflammation , Macrophages/metabolism , NF-kappa B/metabolism , Phenotype , RNA, Small Interfering , Rosacea/genetics , Rosacea/metabolism
15.
Front Genet ; 13: 881051, 2022.
Article in English | MEDLINE | ID: mdl-36081986

ABSTRACT

Background: Aging is characterized by the gradual loss of physiological integrity, resulting in impaired function and easier death. This deterioration is a major risk factor for major human pathological diseases, including cancer, diabetes, cardiovascular disease and neurodegenerative diseases. It is very important to find biomarkers that can prevent aging. Methods: Q-Exactive-MS was used for proteomic detection of young and senescence fibroblast. The key senescence-related molecules (SRMs) were identified by integrating transcriptome and proteomics from aging tissue/cells, and the correlation between these differentially expressed genes and well-known aging-related pathways. Next, we validated the expression of these molecules using qPCR, and explored the correlation between them and immune infiltrating cells. Finally, the enriched pathways of the genes significantly related to the four differential genes were identified using the single cell transcriptome. Results: we first combined proteomics and transcriptome to identified four SRMs. Data sets including GSE63577, GSE64553, GSE18876, GSE85358, and qPCR confirmed that ETF1, PLBD2, ASAH1, and MOXD1 were identified as SRMs. Then the correlation between SRMs and aging-related pathways was excavated and verified. Next, we verified the expression of SRMs at the tissue level and qPCR, and explored the correlation between them and immune infiltrating cells. Finally, at the single-cell transcriptome level, we verified their expression and explored the possible pathway by which they lead to aging. Briefly, ETF1 may affect the changes of inflammatory factors such as IL-17, IL-6, and NFKB1 by indirectly regulating the enrichment and differentiation of immune cells. MOXD1 may regulate senescence by affecting the WNT pathway and changing the cell cycle. ASAH1 may affect development and regulate the phenotype of aging by affecting cell cycle-related genes. Conclusion: In general, based on the analysis of proteomics and transcriptome, we identified four SRMs that may affect aging and speculated their possible mechanisms, which provides a new target for preventing aging, especially skin aging.

16.
Redox Biol ; 55: 102427, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35952475

ABSTRACT

Reactive oxygen species (ROS)-activated proinflammatory signals in keratinocytes play a crucial role in the immunoregulation of inflammatory skin diseases, including rosacea and psoriasis. Nav1.8 is a voltage-gated sodium ion channel, and its abnormal expression in the epidermal layer contributes to pain hypersensitivity in the skin. However, whether and how epidermal Nav1.8 is involved in skin immunoregulation remains unclear. This study was performed to identify the therapeutic role of Nav1.8 in inflammatory skin disorders. We found that Nav1.8 expression was significantly upregulated in the epidermis of rosacea and psoriasis skin lesions. Nav1.8 knockdown ameliorated skin inflammation in LL37-and imiquimod-induced inflammation mouse models. Transcriptome sequencing results indicated that Nav1.8 regulated the expression of pro-inflammatory mediators (IL1ß and IL6) in keratinocytes, thereby contributing to immune infiltration in inflammatory skin disorders. In vitro, tumor necrosis factor alpha (TNFα), a cytokine that drives the development of various inflammatory skin disorders, increased Nav1.8 expression in keratinocytes. Knockdown of Nav1.8 eliminated excess ROS production, thereby attenuating the TNFα-induced production of inflammatory mediators; however, a Nav1.8 blocker did not have the same effect. Mechanistically, Nav1.8 reduced superoxide dismutase 2 (SOD2) activity by directly binding to SOD2 to prevent its deacetylation and mitochondrial localization, subsequently inducing ROS accumulation. Collectively, our study describes a central role for Nav1.8 in regulating pro-inflammatory responses in the skin and indicates a novel therapeutic strategy for rosacea and psoriasis.

17.
BMC Cancer ; 22(1): 791, 2022 Jul 19.
Article in English | MEDLINE | ID: mdl-35854246

ABSTRACT

BACKGROUND: The role of M0 macrophages and their related genes in the prognosis of hepatocellular carcinoma (HCC) remains poorly characterized. METHODS: Multidimensional bioinformatic methods were used to construct a risk score model using M0 macrophage-related genes (M0RGs). RESULTS: Infiltration of M0 macrophages was significantly higher in HCC tissues than in normal liver tissues (P = 2.299e-07). Further analysis revealed 35 M0RGs that were associated with HCC prognosis; two M0RGs (OLA1 and ATIC) were constructed and validated as a prognostic signature for overall survival of patients with HCC. Survival analysis revealed the positive relationship between the M0RG signature and unfavorable prognosis. Correlation analysis showed that this risk model had positive associations with clinicopathological characteristics, somatic gene mutations, immune cell infiltration, immune checkpoint inhibitor targets, and efficacy of common drugs. CONCLUSIONS: The constructed M0RG-based risk model may be promising for the clinical prediction of prognoses and therapeutic responses in patients with HCC.


Subject(s)
Carcinoma, Hepatocellular , Leukemia, Myeloid, Acute , Liver Neoplasms , Adenosine Triphosphatases/genetics , Biomarkers, Tumor/genetics , Carcinoma, Hepatocellular/pathology , GTP-Binding Proteins/genetics , Gene Expression Regulation, Neoplastic , Humans , Leukemia, Myeloid, Acute/genetics , Liver Neoplasms/pathology , Macrophages/pathology , Prognosis
18.
J Inflamm Res ; 15: 2141-2156, 2022.
Article in English | MEDLINE | ID: mdl-35392024

ABSTRACT

Objective: Rosacea is a chronic inflammatory skin disease with high morbidity. Previous studies have described the contribution of skin barrier dysfunction (SBD) in the progression of rosacea, but the specific mechanism remains unclear. In this study, we aim to investigate the key genes that may involve SBD-mediated rosacea aggravation. Methods: In this study, we evaluated the SBD patterns of rosacea based on the expression of 23 skin barrier-related genes (SBRGs) using a consensus clustering analysis, and revealed the SBD-mediated immune cells infiltration in rosacea using GSE65914 dataset. The key genes associated with SBD and rosacea progression were identified using WGCNA analysis and then verified in rosacea mice model. Results: Two distinct SBD patterns (moderate- and high-SBD patterns) were determined in rosacea. GO, KEGG and GSEA analysis revealed the differently immune-related signal pathways between two SBD patterns in rosacea. The XCell immune cell assays showed that the increased immune infiltration with SBD. Subsequently, the WGCNA analysis identified STAT3 as the hub gene related to rosacea and SBD, and correlation analysis revealed that STAT3 could contribute to the progression of rosacea partly by dysregulating immune infiltration via activating the cytokine/chemokines signal. Finally, the up-regulated STAT3 was verified in the epidermis of rosacea tissues and correlated with SBRGs expression using IHC and epidermal transcriptome data of rosacea. The vivo experiment showed that tape stripping-induced SBD evidently induced the expression of STAT3 and increased CD4+ T cell infiltration in LL37-induced rosacea-like skin lesion in mice. Conclusion: In conclusion, our results showed that the destruction of the skin barrier aggravates the inflammation levels and immune infiltration of rosacea partly by activating STAT3-mediated cytokine signal pathways in keratinocytes.

19.
Sheng Wu Gong Cheng Xue Bao ; 38(3): 1149-1158, 2022 Mar 25.
Article in Chinese | MEDLINE | ID: mdl-35355481

ABSTRACT

The α2δ-1 protein coded by Cacna2d1 is dramatically up-regulated in dorsal root ganglion (DRG) neurons and spinal dorsal horn following sensory nerve injury in various animal models of neuropathic pain. Cacna2d1 overexpression potentiates presynaptic and postsynaptic NMDAR activity of spinal dorsal horn neurons to cause pain hypersensitivity. The α2δ-1-NMDAR interaction promotes surface trafficking and synaptic targeting of NMDARs in neuropathic pain caused by chemotherapeutic agents and peripheral nerve injury, as well as in other pathological conditions such as in the paraventricular nucleus (PVN) with neurogenic hypertension and in the brain with ischemic stroke. The lentiviral transfection method was used to construct a human embryonic kidney HEK293T cell line that could stably express α2δ-1-NMDAR complex. A stably transfected cell line was observed by florescence microscope, and identified by RT-qPCR and Western blotting. The results showed that the HEK293T cell line was successfully transfected and the genes could be stably expressed. Subsequently, the transfected cell line was successfully developed into a target drug screening system using patch clamp techniques. It provides a promising cell model for further research on the interaction mechanism of α2δ-1-NMDAR complex and drug screening for chronic pain and related diseases with low side effects.


Subject(s)
Neuralgia , Receptors, N-Methyl-D-Aspartate , Analgesics/pharmacology , Analgesics/therapeutic use , Animals , Drug Discovery , HEK293 Cells , Humans , Neuralgia/drug therapy , Neuralgia/genetics , Neuralgia/metabolism , Receptors, N-Methyl-D-Aspartate/genetics
20.
Front Immunol ; 12: 756550, 2021.
Article in English | MEDLINE | ID: mdl-34899707

ABSTRACT

Rosacea is significantly associated with dementia, particularly Alzheimer's disease (AD). However, the common underlying molecular mechanism connecting these two diseases remains limited. This study aimed to reveal the common molecular regulatory networks and identify the potential therapeutic drugs for rosacea and AD. There were 747 overlapped DEGs (ol-DEGs) that were detected in AD and rosacea, enriched in inflammation-, metabolism-, and apoptosis-related pathways. Using the TF regulatory network analysis, 37 common TFs and target genes were identified as hub genes. They were used to predict the therapeutic drugs for rosacea and AD using the DGIdb/CMap database. Among the 113 predicted drugs, melatonin (MLT) was co-associated with both RORA and IFN-γ in AD and rosacea. Subsequently, network pharmacology analysis identified 19 pharmacological targets of MLT and demonstrated that MLT could help in treating AD/rosacea partly by modulating inflammatory and vascular signaling pathways. Finally, we verified the therapeutic role and mechanism of MLT on rosacea in vivo and in vitro. We found that MLT treatment significantly improved rosacea-like skin lesion by reducing keratinocyte-mediated inflammatory cytokine secretion and repressing the migration of HUVEC cells. In conclusion, this study contributes to common pathologies shared by rosacea and AD and identified MLT as an effective treatment strategy for rosacea and AD via regulating inflammation and angiogenesis.


Subject(s)
Alzheimer Disease , Human Umbilical Vein Endothelial Cells/drug effects , Keratinocytes/drug effects , Melatonin/pharmacology , Rosacea , Animals , Computational Biology/methods , Female , Humans , Mice , Mice, Inbred BALB C , Network Pharmacology/methods , Skin/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...