Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 200
Filter
1.
Yi Chuan ; 46(9): 750-756, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39275874

ABSTRACT

Split-hand/foot malformation is a serious congenital limb malformation characterized by syndactyly and underdevelopment of the phalanges and metatarsals. In this study, we reported a case of a fetus with hand-foot cleft deformity. Whole exome and Sanger sequencing were used to filter out candidate gene mutation sites and provide pre-implantation genetic testing(PGT) for family members. Genetic testing results showed that there was a homozygous mutation c.786G>A (p.Trp262*) in the fetal WNT10B, and both parents were carriers of heterozygous mutations. PGT results showed that out of the two blastocysts, one was a heterozygous mutant and the other was a homozygous mutant. All the embryos had diploid chromosomes. The heterozygous embryo was transferred, and a singleton pregnancy was successfully achieved. This study suggests that homozygous mutations in WNT10B are the likely cause of hand-foot clefts in this family. For families with monogenic diseases, preimplantation genetic testing can effectively prevent the birth of an affected child only after identifying the pathogenic mutation.


Subject(s)
Genetic Testing , Limb Deformities, Congenital , Pedigree , Preimplantation Diagnosis , Adult , Female , Humans , Male , Pregnancy , East Asian People/genetics , Homozygote , Limb Deformities, Congenital/genetics , Mutation , Preimplantation Diagnosis/methods , Proto-Oncogene Proteins , Wnt Proteins/genetics
2.
Cell ; 2024 Sep 12.
Article in English | MEDLINE | ID: mdl-39270656

ABSTRACT

In a rigorous 40-month study, we evaluated the geroprotective effects of metformin on adult male cynomolgus monkeys, addressing a gap in primate aging research. The study encompassed a comprehensive suite of physiological, imaging, histological, and molecular evaluations, substantiating metformin's influence on delaying age-related phenotypes at the organismal level. Specifically, we leveraged pan-tissue transcriptomics, DNA methylomics, plasma proteomics, and metabolomics to develop innovative monkey aging clocks and applied these to gauge metformin's effects on aging. The results highlighted a significant slowing of aging indicators, notably a roughly 6-year regression in brain aging. Metformin exerts a substantial neuroprotective effect, preserving brain structure and enhancing cognitive ability. The geroprotective effects on primate neurons were partially mediated by the activation of Nrf2, a transcription factor with anti-oxidative capabilities. Our research pioneers the systemic reduction of multi-dimensional biological age in primates through metformin, paving the way for advancing pharmaceutical strategies against human aging.

3.
Heliyon ; 10(17): e37320, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-39295998

ABSTRACT

Amanita phalloides poisoning, renowned for its high mortality rates, is one of the most serious food safety issue in certain regions worldwide. Assessment of prognosis and development of more efficacious therapeutic strategies are critical importance for amanita phalloides poisoning patients. The aim of the study is to establish a nomogram to predict the clinical outcome of amanita phalloides poisoning patients based on the independent risk factor for prognosis. Herein, between January 2013 and September 2023, a cohort of 149 patients diagnosed with amanita phalloides poisoning was enrolled and randomly allocated into training and validation cohorts, comprising 102 and 47 patients, respectively. Multivariate logistic regression analysis was performed to identify the independent risk factors for morality of amanita phalloides poisoning patients in training cohort. Subsequently, a nomogram model was constructed to visually display the risk prediction model. The predictive accuracy of nomogram was verified by the validation cohort. The C index, the area under the receiver operating characteristic curve (AUC), and calibration plots were used to assessed the performance of nomogram. The clinical utility was evaluated by decision curve analysis (DCA). In the present study, the results showed that hepatic encephalopathy (HE), upper gastrointestinal bleeding (UGB), AST, and PT were the independent risk factors associated with the mortality of amantia phalloides poisoning patients. We constructed a new nomogram to evaluate the probability of death induced by amantia phalloides poisoning. The AUC for the prediction accuracy of the nomogram was 0.936 for the training cohort and 0.929 for the validation cohort. The calibration curves showed that the predicted probability matched the actual likelihood. The results of the DCA suggested that the nomogram has a good potential for clinical application. In summary, we developed a new nomogram to assess the probability of mortality for amanita phalloides poisoning patients. This nomogram might facilitate clinicians in making more efficacious treatment strategies for patients with amanita phalloides poisoning.

4.
Article in English | MEDLINE | ID: mdl-39316086

ABSTRACT

Cyclosporine (CSA) is a widely used immunosuppressive medication. CSA nephrotoxicity severely limits its application. Kaempferol (KPF), a naturally occurring phenolic compound, has a promising protective effect in reducing CSA-induced renal tubular injury, but the mechanism remains unknown. Our study aimed to determine the protective role of KPF against CSA-induced renal tubular injury. C57/B6 mice and the NRK-52E cell line were employed. CSA worsened renal function in mice, causing detachment and necrosis of tubular cells, leading to tubular vacuolation and renal interstitial fibrosis. CSA caused the detachment, rupture, and death of tubular cells in vitro, resulting in cell viability loss. KPF mitigated all these injurious alterations. KPF hindered CSA-induced ROS generation and protected renal tubular epithelial cells, similar to the antioxidant NAC. CSA lowered SOD activity and GSH levels while increasing MDA levels, and KPF ameliorated these changes. CSA caused phosphorylation of ASK1, JNK, and p38, similar to H2O2, whereas KPF significantly inhibited these changes. In conclusion, KPF reduces CSA-induced tubular epithelial cell injury via its antioxidant properties, inhibits the phosphorylation of ASK1, and inhibits the phosphorylation of p38 and JNK, implying that the synergistic use of KPF in CSA immunotherapy may be a promising option to reduce CSA-evoked renal injury.

5.
Front Bioeng Biotechnol ; 12: 1452780, 2024.
Article in English | MEDLINE | ID: mdl-39234265

ABSTRACT

Tracheal defects, particularly those extending over long segments, present substantial challenges in reconstructive surgery due to complications in vascularization and integration with host tissues. Traditional methods, such as extended tracheostomies and alloplastic stents, often result in significant morbidity due to mucus plugging and mechanical erosion. Recent advances in vascularized composite allograft (VCA) transplantation have opened new avenues for effective tracheal reconstruction. This article reviews the evolution of tracheal reconstruction techniques, focusing on the shift from non-vascularized approaches to innovative revascularization methods that enhance graft integration and functionality. Key advancements include indirect revascularization techniques and the integration of regenerative medicine, which have shown promise in overcoming historical barriers to successful tracheal transplantation. Clinical case studies are presented to illustrate the complexities and outcomes of recent tracheal transplantation procedures, highlighting the potential for long-term success through the integration of advanced vascular engineering and immune modulation strategies. Furthermore, the role of chimerism in reducing graft rejection and the implications for future tracheal transplantation and tissue engineering efforts are discussed. This review underscores the transformative potential of VCA in tracheal reconstruction, paving the way for more reliable and effective treatments for extensive tracheal defects.

6.
Article in English | MEDLINE | ID: mdl-39213272

ABSTRACT

Recently, pressure-sensing mats have been widely used to capture static and dynamic pressure over sleep for posture recognition. Both a full-size mat with a low-density sensing array for figuring out the structure of the whole body and a miniature scale mat with a high-density sensing array for identifying the local characteristics around the chest have been investigated. However, both of the mat systems may face the challenge in the trade-off between the computational complexity (involving the size, density, etc. of the mat) and the performance of sleep posture recognition, where high performance may requires overcomplex computation and result in time latency in real-time sleep posture monitoring. In this paper, a lightweight neural network named ConcatNet, is proposed to realize sleep postures (supine, left, right, and prone) recognition in real time while maintaining a favorable performance. In ConcatNet, the inception module is proposed to extract the image features under multiple receptive fields, while the multi-layer feature fusion module is utilized to fuse deep and shallow features to enhance the model performance. To further improve the efficiency of the model, the depthwise convolution is adopoted. ConcatNet models in 3 different scales (ConcatNet-S, ConcatNet-M, and ConcatNet-L) are built to explore the impact of the sensor density on sleep posture recognition performance. Experimental results exhibit that ConcatNet-M corresponding to medium sensor density ( 16×16 ) achieved the best comprehensive performance, with short-term data cross-validation accuracy at 95.56% and overnight data testing accuracy at 94.68%. The model size is 7.91KB, FLOPs is 56.47K, and the inference time is only 0.38ms, which shows an outstanding performance of real-time sleep posture recognition with minimum consumption, indicating the potential to be deployed in mobile devices.


Subject(s)
Algorithms , Neural Networks, Computer , Posture , Sleep , Humans , Posture/physiology , Sleep/physiology , Male , Adult , Pressure , Equipment Design , Female , Supine Position/physiology , Prone Position/physiology , Young Adult
7.
Eur J Cardiothorac Surg ; 66(1)2024 Jul 01.
Article in English | MEDLINE | ID: mdl-39067048
8.
Angew Chem Int Ed Engl ; : e202409673, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39052276

ABSTRACT

Precisely controlling the microstructure of supported metal catalysts and regulating metal-support interactions at the atomic level are essential for achieving highly efficient heterogeneous catalysts. Strong metal-support interaction (SMSI) not only stabilizes metal nanoparticles and improves their resistance to sintering but also modulates the electrical interaction between metal species and the support, optimizing the catalytic activity and selectivity. Therefore, understating the formation mechanism of SMSI and its dynamic evolution during the chemical reaction at the atomic scale is crucial for guiding the structural design and performance optimization of supported metal catalysts. Recent advancements in in-situ transmission electron microscopy (TEM) have shed new light on these complex phenomena, providing deeper insights into the SMSI dynamics. Here, the research progress of in-situ TEM investigation on SMSI in heterogeneous catalysis is systematically reviewed, focusing on the formation dynamics, structural evolution during the catalytic reactions, and regulation methods of SMSI. The significant advantages of in-situ TEM technologies for SMSI research are also highlighted. Moreover, the challenges and probable development paths of in-situ TEM studies on the SMSI are also provided.

9.
Bioeng Transl Med ; 9(4): e10671, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39036086

ABSTRACT

Restoration of extensive tracheal damage remains a significant challenge in respiratory medicine, particularly in instances stemming from conditions like infection, congenital anomalies, or stenosis. The trachea, an essential element of the lower respiratory tract, constitutes a fibrocartilaginous tube spanning approximately 10-12 cm in length. It is characterized by 18 ± 2 tracheal cartilages distributed anterolaterally with the dynamic trachealis muscle located posteriorly. While tracheotomy is a common approach for patients with short-length defects, situations requiring replacement arise when the extent of lesion exceeds 1/2 of the length in adults (or 1/3 in children). Tissue engineering (TE) holds promise in developing biocompatible airway grafts for addressing challenges in tracheal regeneration. Despite the potential, the extensive clinical application of tissue-engineered tracheal substitutes encounters obstacles, including insufficient revascularization, inadequate re-epithelialization, suboptimal mechanical properties, and insufficient durability. These limitations have led to limited success in implementing tissue-engineered tracheal implants in clinical settings. This review provides a comprehensive exploration of historical attempts and lessons learned in the field of tracheal TE, contextualizing the clinical prerequisites and vital criteria for effective tracheal grafts. The manufacturing approaches employed in TE, along with the clinical application of both tissue-engineered and non-tissue-engineered approaches for tracheal reconstruction, are discussed in detail. By offering a holistic view on TE substitutes and their implications for the clinical management of long-segment tracheal lesions, this review aims to contribute to the understanding and advancement of strategies in this critical area of respiratory medicine.

10.
Front Immunol ; 15: 1304973, 2024.
Article in English | MEDLINE | ID: mdl-39050854

ABSTRACT

Background: Evidence from observational studies and clinical trials has associated gut microbiota with infectious diseases. However, the causal relationship between gut microbiota and infectious diseases remains unclear. Methods: We identified gut microbiota based on phylum, class, order, family, and genus classifications, and obtained infectious disease datasets from the IEU OpenGWAS database. The two-sample Mendelian Randomization (MR) analysis was then performed to determine whether the gut microbiota were causally associated with different infectious diseases. In addition, we performed reverse MR analysis to test for causality. Results: Herein, we characterized causal relationships between genetic predispositions in the gut microbiota and nine infectious diseases. Eight strong associations were found between genetic predisposition in the gut microbiota and infectious diseases. Specifically, the abundance of class Coriobacteriia, order Coriobacteriales, and family Coriobacteriaceae was found to be positively associated with the risk of lower respiratory tract infections (LRTIs). On the other hand, family Acidaminococcaceae, genus Clostridiumsensustricto1, and class Bacilli were positively associated with the risk of endocarditis, cellulitis, and osteomyelitis, respectively. We also discovered that the abundance of class Lentisphaeria and order Victivallales lowered the risk of sepsis. Conclusion: Through MR analysis, we found that gut microbiota were causally associated with infectious diseases. This finding offers new insights into the microbe-mediated infection mechanisms for further clinical research.


Subject(s)
Communicable Diseases , Gastrointestinal Microbiome , Genetic Predisposition to Disease , Mendelian Randomization Analysis , Humans , Gastrointestinal Microbiome/genetics , Communicable Diseases/microbiology
11.
Adv Mater ; : e2407034, 2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39054932

ABSTRACT

Decorating surfaces with wetting gradients or topological structures is a prevailing strategy to control uni-directional spreading without energy input. However, current methods, limited by fixed design, cannot achieve multi-directional control of liquids, posing challenges to practical applications. Here, a structured surface composed of arrayed three-dimensional asymmetric fang-structured units is reported that enable in situ control of customized multi-directional spreading for different surface tension liquids, exhibiting five novel modes. This is attributed to bottom-up distributed multi-curvature features of surface units, which create varied Laplace pressure gradients to guide the spreading of different-wettability liquids along specific directions. The surface's capability to respond to liquid properties for multimodal control leads to innovative functions that are absent in conventional structured surfaces. Selective multi-path circuits can be constructed by taking advantage of rich liquid behaviors with the surface; surface tensions of wetting liquids can be portably indicated with a resolution scope of 0.3-3.4 mN m-1 using the surface; temperature-mediated change of liquid properties is utilized to smartly manipulate liquid behavior and achieve the spatiotemporal-controllable targeted cooling of the surface at its heated state. These novel applications open new avenues for developing advanced surfaces for liquid manipulation.

12.
Science ; 384(6702): 1344-1349, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38900891

ABSTRACT

Directional liquid transport has been widely observed in various species including cacti, spiders, lizards, the pitcher plant Nepenthes alata, and Araucaria leaves. However, in all these examples the liquid transport for a specific liquid is completely restricted in a fixed direction. We demonstrate that Crassula muscosa shoot surfaces have the ability to transport a specific liquid unidirectionally in either direction. This is accomplished through the presence of asymmetric reentrant leaves with varying reentrant angles, which yields the variation in liquid meniscus heterogeneity. These findings enable engineered biomimetic structures capable of selective directional liquid transport, with functions such as intelligent flow direction switching, liquid distribution, and mixing.

13.
Neural Netw ; 178: 106437, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38936111

ABSTRACT

Our minds represent miscellaneous objects in the physical world metaphorically in an abstract and complex high-dimensional object space, which is implemented in a two-dimensional surface of the ventral temporal cortex (VTC) with topologically organized object selectivity. Here we investigated principles guiding the topographical organization of object selectivities in the VTC by constructing a hybrid Self-Organizing Map (SOM) model that harnesses a biologically inspired algorithm of wiring cost minimization and adheres to the constraints of the lateral wiring span of human VTC neurons. In a series of in silico experiments with functional brain neuroimaging and neurophysiological single-unit data from humans and non-human primates, the VTC-SOM predicted the topographical structure of fine-scale category-selective regions (face-, tool-, body-, and place-selective regions) and the boundary in large-scale abstract functional maps (animate vs. inanimate, real-word small-size vs. big-size, central vs. peripheral), with no significant loss in functionality (e.g., categorical selectivity and view-invariant representations). In addition, when the same principle was applied to V1 orientation preferences, a pinwheel-like topology emerged, suggesting the model's broad applicability. In summary, our study illustrates that the simple principle of wiring cost minimization, coupled with the appropriate biological constraint of lateral wiring span, is able to implement the high-dimensional object space in a two-dimensional cortical surface.


Subject(s)
Temporal Lobe , Humans , Temporal Lobe/physiology , Animals , Computer Simulation , Models, Neurological , Algorithms , Neurons/physiology , Neural Networks, Computer , Magnetic Resonance Imaging , Brain Mapping
14.
IEEE J Biomed Health Inform ; 28(9): 5189-5200, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38771683

ABSTRACT

Sleep staging plays a critical role in evaluating the quality of sleep. Currently, most studies are either suffering from dramatic performance drops when coping with varying input modalities or unable to handle heterogeneous signals. To handle heterogeneous signals and guarantee favorable sleep staging performance when a single modality is available, a pseudo-siamese neural network (PSN) to incorporate electroencephalography (EEG), electrooculography (EOG) characteristics is proposed (PSEENet). PSEENet consists of two parts, spatial mapping modules (SMMs) and a weight-shared classifier. SMMs are used to extract high-dimensional features. Meanwhile, joint linkages among multi-modalities are provided by quantifying the similarity of features. Finally, with the cooperation of heterogeneous characteristics, associations within various sleep stages can be established by the classifier. The evaluation of the model is validated on two public datasets, namely, Montreal Archive of Sleep Studies (MASS) and SleepEDFX, and one clinical dataset from Huashan Hospital of Fudan University (HSFU). Experimental results show that the model can handle heterogeneous signals, provide superior results under multimodal signals and show good performance with single modality. PSEENet obtains accuracy of 79.1%, 82.1% with EEG, EEG and EOG on Sleep-EDFX, and significantly improves the accuracy with EOG from 73.7% to 76% by introducing similarity information.


Subject(s)
Electroencephalography , Electrooculography , Neural Networks, Computer , Signal Processing, Computer-Assisted , Sleep Stages , Humans , Electrooculography/methods , Electroencephalography/methods , Sleep Stages/physiology , Adult , Male , Female , Young Adult , Middle Aged , Algorithms
15.
Eur J Nutr ; 63(6): 2209-2220, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38743096

ABSTRACT

PURPOSE: Diet-related factors are of great significance in the regulation of hypothalamic-pituitary-adrenal (HPA) and hypothalamic-pituitary-gonad (HPG) axes. In this study, we aimed to investigate the effects of chronic exposure to a high fat diet (HFD), fructose or sucralose on the endocrine functions. METHODS: Male, Sprague-Dawley rats received a normal chow diet, HFD, 10% fructose or 0.02% sucralose for 10 weeks. Behavioral changes were assessed by open field (OFT) and elevated plus-maze (EPM) tests at week 8. H&E staining was used to observe pathological changes in adrenal cortex, testis and perirenal adipose tissue. Serum hormone concentrations were quantified via enzyme-linked immunosorbent assay (ELISA). The mRNA expression levels of genes along the HPA and HPG axes were determined using real-time PCR. RESULTS: All types of dietary interventions increased body weight and disturbed metabolic homeostasis, with anxiogenic phenotype in behavioral tests and damage to cell morphology of adrenal cortex and testis being observed. Along the HPA axis, significantly increased corticotropin releasing hormone (CRH), adrenocorticotropic hormone (ACTH) and corticosterone (CORT) concentrations were observed in the HFD or 0.02% sucralose group. For HPG axis, gonadotropin-releasing hormone (GnRH) and estradiol (E2) concentrations were significantly increased in all dietary intervention groups, while decreased concentrations of follicle-stimulating hormone (FSH) and testosterone (T) were also detected. Moreover, transcriptional profiles of genes involved in the synthesis of hormones and corresponding hormone receptors were significantly altered. CONCLUSION: Long-term consumption of HFD, fructose or sucralose manifested deleterious effects on endocrine system and resulted in the dysregulation of HPA and HPG axes.


Subject(s)
Diet, High-Fat , Fructose , Hypothalamo-Hypophyseal System , Pituitary-Adrenal System , Rats, Sprague-Dawley , Sucrose , Testis , Animals , Male , Hypothalamo-Hypophyseal System/drug effects , Hypothalamo-Hypophyseal System/metabolism , Pituitary-Adrenal System/drug effects , Pituitary-Adrenal System/metabolism , Diet, High-Fat/adverse effects , Rats , Fructose/adverse effects , Sucrose/analogs & derivatives , Sucrose/pharmacology , Testis/drug effects , Testis/metabolism , Non-Nutritive Sweeteners/adverse effects , Corticosterone/blood , Adrenocorticotropic Hormone/blood , Corticotropin-Releasing Hormone/metabolism , Corticotropin-Releasing Hormone/genetics
16.
Eur J Pharmacol ; 976: 176660, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-38795756

ABSTRACT

Apigenin and baicalein are structurally related flavonoids that have been reported to have multiple pharmacological activities. The aim of this study was to investigate the protective effects and potential mechanisms of apigenin and baicalein in D-galactose-induced aging rats. First, apigenin and baicalein showed remarkable antioxidant activity and anti-glycation activity in vitro. Secondly, the protective effects of apigenin and baicalein on aging rats were investigated. We found that apigenin and baicalein supplementation significantly ameliorated aging-related changes such as declines in the spatial learning and memory and histopathological damage of the hippocampus and thoracic aorta. In addition, our data showed that apigenin and baicalein alleviated oxidative stress as illustrated by decreasing MDA level, increasing SOD activity and GSH level. Further data showed that they significantly reduced the accumulation of advanced glycation end products (AGEs), inhibited the expression of RAGE, down-regulated phosphorylated nuclear factor (p-NF-κB (p65)). Our results suggested that the protective effects of apigenin and baicalein on aging rats were at least partially related to the inhibition of AGEs/RAGE/NF-κB pathway and the improvement of oxidative damage. Overall, apigenin and baicalein showed almost equal anti-aging efficacy. Our results provided an experimental basis for the application of apigenin and baicalein to delay the aging process.


Subject(s)
Aging , Aorta, Thoracic , Apigenin , Flavanones , Galactose , Glycation End Products, Advanced , NF-kappa B , Oxidative Stress , Rats, Sprague-Dawley , Receptor for Advanced Glycation End Products , Signal Transduction , Animals , Receptor for Advanced Glycation End Products/metabolism , Glycation End Products, Advanced/metabolism , Flavanones/pharmacology , Flavanones/therapeutic use , Apigenin/pharmacology , Apigenin/therapeutic use , Aging/drug effects , Aging/metabolism , Male , NF-kappa B/metabolism , Rats , Signal Transduction/drug effects , Oxidative Stress/drug effects , Aorta, Thoracic/drug effects , Aorta, Thoracic/metabolism , Aorta, Thoracic/pathology , Hippocampus/drug effects , Hippocampus/metabolism , Hippocampus/pathology , Cognitive Dysfunction/drug therapy , Cognitive Dysfunction/metabolism , Cognitive Dysfunction/chemically induced , Antioxidants/pharmacology
17.
BMC Med ; 22(1): 203, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38764021

ABSTRACT

BACKGROUND: To the best of our knowledge, no study has investigated the potential joint effect of large for gestational age (LGA) and assisted reproductive technology (ART) on the long-term health of children. METHODS: This was a prospective cohort study that recruited children whose parents had received ART treatment in the Center for Reproductive Medicine, Shandong Provincial Hospital, affiliated to Shandong University, between January 2006 and December 2017. Linear mixed model was used to compare the main outcomes. The mediation model was used to evaluate the intermediary effect of body mass index (BMI). RESULTS: 4138 (29.5%) children born LGA and 9910 (70.5%) children born appropriate for gestational age (AGA) were included in the present study. The offspring ranged from 0.4 to 9.9 years. LGAs conceived through ART were shown to have higher BMI, blood pressure, fasting blood glucose, fasting insulin, and homeostatic model assessment of insulin resistance values, even after controlling for all covariates. The odds of overweight and insulin resistance are also higher in LGA subjects. After adjusting for all covariates, LGAs conceived through ART had BMI and BMI z-scores that were 0.48 kg/m2 and 0.34 units greater than those of AGAs, respectively. The effect of LGA on BMI was identified as early as infancy and remained consistently significant throughout pre-puberty. CONCLUSIONS: Compared to AGA, LGA children conceived from ART were associated with increased cardiovascular-metabolic events, which appeared as early as infancy and with no recovery by pre-puberty.


Subject(s)
Body Mass Index , Reproductive Techniques, Assisted , Humans , Prospective Studies , Female , Male , Child , Infant , Child, Preschool , Gestational Age , Insulin Resistance/physiology , Birth Weight/physiology , Cardiovascular Diseases/epidemiology , Infant, Newborn , China/epidemiology
18.
Article in English | MEDLINE | ID: mdl-38805186

ABSTRACT

CONTEXT: Embryo biopsy, which is necessary for preimplantation genetic testing (PGT), has not been fully investigated regarding its potential influences and safety. Previous studies of children born from biopsied embryos (PGT children) have primarily centered around their growth and neuropsychological development, while there remains limited knowledge concerning their endocrine and metabolic parameters. OBJECTIVE: This study aims to examine the effect of trophectoderm (TE) biopsy on metabolic outcomes for PGT children. METHODS: A total of 1267 children from the Center for Reproductive Medicine, Shandong University, who were conceived through in vitro fertilization (IVF)/intracytoplasmic sperm injection (ICSI) with and without PGT, were analyzed in this study. Three sets of measurements pertaining to growth and metabolism were taken at each predetermined follow-up time point. The linear regression models within a generalized estimating equation were employed to examine the associations between the PGT and each outcome measure and the approach of false discovery rate was used to correct for multiple comparisons. RESULTS: After controlling for confounding factors and correcting for multiple comparisons, no statistically significant difference was identified in any of the measured variables between the PGT children and children conceived by IVF alone (IVF children) and children conceived through IVF using ICSI (ICSI children). The same is true also for age- or sex-based subgroup analyses. CONCLUSION: Between the ages of 1 and 5 years, there are no clinically adverse metabolic outcomes observed in PGT children, and their metabolic profiles are essentially identical to those of IVF children and ICSI children.

20.
Article in English | MEDLINE | ID: mdl-38743545

ABSTRACT

Fusing features from different sources is a critical aspect of many computer vision tasks. Existing approaches can be roughly categorized as parameter-free or learnable operations. However, parameter-free modules are limited in their ability to benefit from offline learning, leading to poor performance in some challenging situations. Learnable fusing methods are often space-consuming and timeconsuming, particularly when fusing features with different shapes. To address these shortcomings, we conducted an in-depth analysis of the limitations associated with both fusion methods. Based on our findings, we propose a generalized module named Asymmetric Convolution Module (ACM). This module can learn to encode effective priors during offline training and efficiently fuse feature maps with different shapes in specific tasks. Specifically, we propose a mathematically equivalent method for replacing costly convolutions on concatenated features. This method can be widely applied to fuse feature maps across different shapes. Furthermore, distinguished from parameter-free operations that can only fuse two features of the same type, our ACM is general, flexible, and can fuse multiple features of different types. To demonstrate the generality and efficiency of ACM, we integrate it into several state-of-the-art models on three representative vision tasks: visual object tracking, referring video object segmentation, and monocular 3D object detection. Extensive experimental results on three tasks and several datasets demonstrate that our new module can bring significant improvements and noteworthy efficiency.

SELECTION OF CITATIONS
SEARCH DETAIL