Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 11.529
Filter
1.
Mol Neurobiol ; 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38823000

ABSTRACT

In this study, we aimed to work through the key genes involved in the process of pyroptosis in Alzheimer's disease (AD) to identify potential biomarkers using bioinformatics technology and further explore the underlying molecular mechanisms. The transcriptome data of brain tissue in AD patients were screened from the GEO database, and pyroptosis-related genes were analyzed. The functions of differential genes were analyzed by enrichment analysis and protein-protein interaction. The diagnostic model was established using LASSO and logistic regression analysis, and the correlation of clinical data was analyzed. Based on single-cell analysis of brain tissues of patients with AD, immunofluorescence and western blotting were used to explore the key cells affected by the hub gene. After GSEA, qRT-PCR, western blotting, LDH, ROS, and JC-1 were used to investigate the potential mechanism of the hub gene on pyroptosis. A total of 15 pyroptosis differentially expressed genes were identified. A prediction model consisting of six genes was established by LASSO and logistic regression analysis, and the area under the curve was up to 0.81. As a hub gene, CHMP4B was negatively correlated with the severity of AD. CHMP4B expression was decreased in the hippocampal tissue of patients with AD and mice. Single-cell analysis showed that CHMP4B was downregulated in AD microglia. Overexpression of CHMP4B reduced the release of LDH and ROS and restored mitochondrial membrane potential, thereby alleviating the inflammatory response during microglial pyroptosis. In summary, CHMP4B as a hub gene provides a new strategy for the diagnosis and treatment of AD.

2.
Angew Chem Int Ed Engl ; : e202406576, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38828829

ABSTRACT

Oriented synthesis of functional materials is a focus of attention in material science. As one of the most important function materials, infrared nonlinear optical materials with large second harmonic generation effects and broad optical bandgap are in urgent need. In this work, directed by the theoretical structure prediction, the first series of non-centrosymmetric (NCS) alkali-alkaline earth metal [PS4]-based thiophosphates LiCaPS4 (Ama2), NaCaPS4 (P21), KCaPS4 (Pna21), RbCaPS4 (Pna21), CsCaPS4 (Pna21) were successfully synthesized. Comprehensive characterizations reveal that ACaPS4 could be regarded as promising IR NLO materials, exhibiting wide bandgap (3.77-3.86 eV), moderate birefringence (0.027-0.064 at 1064 nm), high laser-induced damage threshold (LIDT, ~10 × AGS), and suitable phase-matching second harmonic generation responses (0.4-0.6 × AGS). Structure-properties analyses illustrate that the Ca-S bonds show non-ignorable covalent feature, and [PS4] together with [CaSn] units play dominant roles to determine the bandgap and SHG response. This work indicates that Li-, Na- and K- analogs may be promising infrared nonlinear optical material candidates, and this is the first successful case of "prediction to synthesis" involving infrared (IR) nonlinear optical (NLO) crystals in the thiophosphate system and may provide a new avenue to the design and oriented synthesis of high-performance function materials in the future.

3.
Rev Sci Instrum ; 95(6)2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38829216

ABSTRACT

Non-destructive measurements of low-intensity charged particle beams are particularly challenging for beam diagnostics. At the Heavy Ion Accelerator Facility in Lanzhou (HIRFL), beams with weak currents below 1 µA are often provided for experiments. The detection of such low beam current is below the threshold of typical standard beam current transformers. Therefore, a low-intensity monitoring system is developed by using a sensitive capacitive pick-up (PU) and low-noise electronics. This device measures beam currents by digitally analyzing the amplitude of the PU signals using a homodyne detection scheme. During lab tests, the amplitude nonlinearity is <0.5% in the operational range of 1 nA-45 µA and the amplitude resolution is 0.94 nA. At present, four measurement systems for low beam currents are installed at HIRFL for the monitoring of standard operating conditions with low beam currents below 1 µA. After an absolute calibration with a Faraday cup, it can be used for accurate beam intensity measurement with a current resolution of about 1 nA.

4.
Regen Ther ; 26: 60-70, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38828010

ABSTRACT

Background: Osteoarthritis (OA) is the most frequently diagnosed chronic joint disease. CircSEC24A is significantly elevated in OA chondrocytes upon IL-1ß stimulation. However, its biological function in OA is still not fully understood. Methods: The circRNAs-miRNA-mRNA network was predicted by bioinformatics analysis. An in vitro OA chondrocytes model was established by IL-1ß stimulation. The expression of circSEC24A, miR-107-5p, CASP3, apoptosis-related molecules and extracellular matrix (ECM) components were detected by Western blot and qRT-PCR. MTT assay and Annexin V/PI staining were employed to monitor cell viability and apoptosis, respectively. The interaction between circSEC24A and miR-107-5p, as well as the binding between miR-107-5p and CASP3 3' UTR were detected by luciferase reporter and RIP assays. Cytokine secretion was monitored by ELISA assay. The role of circSEC24A was also explored in anterior cruciate ligament transection (ACLT) rat models. Results: CircSEC24A and CASP3 were increased, but miR-107-5p was decreased in rat OA cartilage tissues and OA chondrocytes. CircSEC24A acted as a sponge of miR-107-5p. Knockdown of circSEC24A promoted chondrocyte proliferation, but suppressed chondrocyte apoptosis, ECM degradation and inflammation via sponging miR-107-5p. CASP3 was identified as a miR-107-5p target gene. MiR-107-5p mimics protected against OA progression via targeting CASP3. Silencing of circSEC24A alleviated OA progression in ACLT model. Conclusion: CircSEC24A promotes OA progression through miR-107-5p/CASP3 axis.

5.
Bioact Mater ; 37: 407-423, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38689660

ABSTRACT

Traditional optical waveguides or mediums are often silica-based materials, but their applications in biomedicine and healthcare are limited due to the poor biocompatibility and unsuitable mechanical properties. In term of the applications in human body, a biocompatible hydrogel system with excellent optical transparency and mechanical flexibility could be beneficial. In this review, we explore the different designs of hydrogel-based optical waveguides derived from natural and synthetic sources. We highlighted key developments such as light emitting contact lenses, implantable optical fibres, biosensing systems, luminating and fluorescent materials. Finally, we expand further on the challenges and perspectives for hydrogel waveguides to achieve clinical applications.

6.
Heliyon ; 10(7): e28520, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38689952

ABSTRACT

Purpose: The recognition of sepsis as a heterogeneous syndrome necessitates identifying distinct subphenotypes to select targeted treatment. Methods: Patients with sepsis from the MIMIC-IV database (2008-2019) were randomly divided into a development cohort (80%) and an internal validation cohort (20%). Patients with sepsis from the ICU database of Peking University People's Hospital (2008-2022) were included in the external validation cohort. Time-series k-means clustering analysis and dynamic time warping was performed to develop and validate sepsis subphenotypes by analyzing the trends of 21 vital signs and laboratory indicators within 24 h after sepsis onset. Inflammatory biomarkers were compared in the ICU database of Peking University People's Hospital, whereas treatment heterogeneity was compared in the MIMIC-IV database. Findings: Three sub-phenotypes were identified in the development cohort. Type A patients (N = 2525, 47%) exhibited stable vital signs and fair organ function, type B (N = 1552, 29%) was exhibited an obvious inflammatory response and stable organ function, and type C (N = 1251, 24%) exhibited severely impaired organ function with a deteriorating tendency. Type C demonstrated the highest mortality rate (33%) and levels of inflammatory biomarkers, followed by type B (24%), whereas type A exhibited the lowest mortality rate (11%) and levels of inflammatory biomarkers. These subphenotypes were confirmed in both the internal and external cohorts, demonstrating similar features and comparable mortality rates. In type C patients, survivors had significantly lower fluid intake within 24 h after sepsis onset (median 2891 mL, interquartile range (IQR) 1530-5470 mL) than that in non-survivors (median 4342 mL, IQR 2189-7305 mL). For types B and C, survivors showed a higher proportion of indwelling central venous catheters (p < 0.05). Conclusion: Three novel phenotypes of patients with sepsis were identified and validated using time-series data, revealing significant heterogeneity in inflammatory biomarkers, treatments, and consistency across cohorts.

8.
Heliyon ; 10(9): e30268, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38720717

ABSTRACT

Background: Pancreatic mucinous adenocarcinoma (PMAC) is a rare malignant tumour, and there is limited understanding of its epidemiology and prognosis. Initially, PMAC was considered a metastatic manifestation of other cancers; however, instances of non-metastatic PMAC have been documented through monitoring, epidemiological studies, and data from the Surveillance, Epidemiology, and End Results (SEER) database. Therefore, it is crucial to investigate the epidemiological characteristics of PMAC and discern the prognostic differences between PMAC and the more prevalent pancreatic ductal adenocarcinoma (PDAC). Methods: The study used data from the SEER database from 2000 to 2018 to identify patients diagnosed with PMAC or PDAC. To ensure comparable demographic characteristics between PDAC and PMAC, propensity score matching was employed. Kaplan-Meier analysis was used to analyse overall survival (OS) and cancer-specific survival (CSS). Univariate and multivariate Cox regression analyses were used to determine independent risk factors influencing OS and CSS. Additionally, the construction and validation of risk-scoring models for OS and CSS were achieved through the least absolute shrinkage and selection operator-Cox regression technique. Results: The SEER database included 84,857 patients with PDAC and 3345 patients with PMAC. Notably, significant distinctions were observed in the distribution of tumour sites, diagnosis time, use of radiotherapy and chemotherapy, tumour size, grading, and staging between the two groups. The prognosis exhibited notable improvement among married individuals, those receiving acceptable chemotherapy, and those with focal PMAC (p < 0.05). Conversely, patients with elevated log odds of positive lymph node scores or higher pathological grades in the pancreatic tail exhibited a more unfavourable prognosis (p < 0.05). The risk-scoring models for OS or CSS based on prognostic factors indicated a significantly lower prognosis for high-risk patients compared to their low-risk counterparts (area under the curve OS: 0.81-0.82, CSS: 0.80-0.82). Conclusion: PMAC exhibits distinct clinical characteristics compared to non-specific PDAC. Leveraging these features and pathological classifications allows for accurate prognostication of PMAC or PDAC.

9.
Front Pharmacol ; 15: 1390294, 2024.
Article in English | MEDLINE | ID: mdl-38720773

ABSTRACT

Introduction: Ganoderma lucidum (G. lucidum, Lingzhi) has long been listed as a premium tonic that can be used to improve restlessness, insomnia, and forgetfulness. We previously reported that a rat model of sporadic Alzheimer's disease (sAD) that was induced by an intracerebroventricular injection of streptozotocin (ICV-STZ) showed significant learning and cognitive deficits and sleep disturbances. Treatment with a G. lucidum spore extract with the sporoderm removed (RGLS) prevented learning and memory impairments in sAD model rats. Method: The present study was conducted to further elucidate the preventive action of RGLS on sleep disturbances in sAD rats by EEG analysis, immunofluorescence staining, HPLC-MS/MS and Western blot. Results: Treatment with 720 mg/kg RGLS for 14 days significantly improved the reduction of total sleep time, rapid eye movement (REM) sleep time, and non-REM sleep time in sAD rats. The novelty recognition experiment further confirmed that RGLS prevented cognitive impairments in sAD rats. We also found that RGLS inhibited the nuclear factor-κB (NF-κB)/Nod-like receptor family pyrin domain-containing 3 (NLRP3) inflammatory pathway in the medial prefrontal cortex (mPFC) in sAD rats and ameliorated the lower activity of γ-aminobutyric acid (GABA)-ergic neurons in the parabrachial nucleus (PBN). Discussion: These results suggest that inhibiting the neuroinflammatory response in the mPFC may be a mechanism by which RGLS improves cognitive impairment. Additionally, improvements in PBN-GABAergic activity and the suppression of neuroinflammation in the mPFC in sAD rats might be a critical pathway to explain the preventive effects of RGLS on sleep disturbances in sAD.

10.
Front Pharmacol ; 15: 1406127, 2024.
Article in English | MEDLINE | ID: mdl-38720779

ABSTRACT

Introduction: Ganoderma lucidum: (G. lucidum, Lingzhi) is a medicinal and edible homologous traditional Chinese medicine that is used to treat various diseases, including Alzheimer's disease and mood disorders. We previously reported that the sporoderm-removed G. lucidum spore extract (RGLS) prevented learning and memory impairments in a rat model of sporadic Alzheimer's disease (sAD), but the effect of RGLS on depression-like behaviors in this model and its underlying molecular mechanisms of action remain unclear. Method: The present study investigated protective effects of RGLS against intracerebroventricular streptozotocin (ICV-STZ)-induced depression in a rat model of sAD and its underlying mechanism. Effects of RGLS on depression- and anxiety-like behaviors in ICV-STZ rats were assessed in the forced swim test, sucrose preference test, novelty-suppressed feeding test, and open field test. Results: Behavioral tests demonstrated that RGLS (360 and 720 mg/kg) significantly ameliorated ICV-STZ-induced depression- and anxiety-like behaviors. Immunofluorescence, Western blot and enzyme-linked immunosorbent assay results further demonstrated that ICV-STZ rats exhibited microglia activation and neuroinflammatory response in the medial prefrontal cortex (mPFC), and RGLS treatment reversed these changes, reflected by the normalization of morphological changes in microglia and the expression of NF-κB, NLRP3, ASC, caspase-1 and proinflammatory cytokines. Golgi staining revealed that treatment with RGLS increased the density of mushroom spines in neurons. This increase was associated with elevated expression of brain-derived neurotrophic protein in the mPFC. Discussion: In a rat model of ICV-STZ-induced sAD, RGLS exhibits antidepressant-like effects, the mechanism of which may be related to suppression of the inflammatory response modulated by the NF-κB/NLRP3 pathway and enhancement of synaptic plasticity in the mPFC.

11.
PLoS One ; 19(5): e0302928, 2024.
Article in English | MEDLINE | ID: mdl-38713718

ABSTRACT

This paper analyzes how emigration impacts fiscal gap of population-exporting region in the long term. We construct a general equilibrium model of emigration and fiscal gap and make empirical verification using two-step system GMM model. Among the major lessons from this work, five general and striking results are worth highlighting: (1) the economic losses of emigration are the immediate cause of widening the fiscal gap. (2) in the short and long term, emigration can expand the fiscal revenue gap through the superimposed effect of tax rate and tax base. (3) the gap in fiscal expenditure is widened by the outflow of people in the short term. However, local governments would change the strategy to keep the spending gap from widening in the long run. (4) a positive impact of emigration on the fiscal gap. the more severe population emigration, the larger the fiscal gap. (5) when the trend of emigration becomes irreversible, the subsequent efforts of local governments to expand fiscal expenditure for attraction population would not only fail to revive the regional economy, but aggravate the expansion of fiscal gap. The contribution of research is twofold. On the one hand, it fills the theoretical gap between emigration and fiscal gap because previous studies have paid little attention to the fiscal problems of local government of population outflow. On the other hand, the selection of Northeast China that has been subject to long-term out-of-population migration is good evidence to verify this theory, which is tested very well using the 2S-GMM model. The comprehensive discussion on the relationship between emigration and fiscal gap is helpful to guide those continuous population-exporting regions that are facing a huge fiscal gap how to solve the fiscal gap and unsustainability from the perspective of fiscal revenue and expenditure.


Subject(s)
Emigration and Immigration , Humans , China , Population Dynamics , Taxes/economics
12.
Article in English | MEDLINE | ID: mdl-38703990

ABSTRACT

Heated effluent injection, cold hypolimnetic water inputs from dams, and extreme weather events can lead to unpredictable temperature fluctuations in natural waters, impacting fish performance and fitness. We hypothesized that fish exposed to such unpredictable fluctuations would exhibit weaker growth and enhanced thermal tolerance compared to predictable conditions. Qingbo (Spinibarbus sinensis) was selected as the experimental subject in this study. The qingbo were divided into a constant temperature group (C, 22 ± 0.5 °C), a predictable temperature fluctuation group (PF, 22 ± 4 °C, first warming, then cooling within a day) and an unpredictable temperature fluctuation group (UF, 22 ± 4 °C, the order of warming or cooling is random). After 40 days of temperature acclimation, the growth, metabolic rate, spontaneous activity, thermal tolerance, plasma cortisol concentration and liver hsp70 level of the fish were measured. Unexpectedly, neither the PF nor the UF group showed decreased growth compared to the C group. This could be attributed to the fact that temperature variation did not lead to a substantial increase in basic energy expenditure. Furthermore, feeding rates increased due to temperature fluctuations, although the difference was not significant. Both the PF and UF groups exhibited increased upper thermal tolerance, but only the UF group exhibited improved lower thermal tolerance and higher liver hsp70 levels compared to the C group. The qingbo that experienced unpredictable temperature fluctuations had the best thermal tolerance among the 3 groups, which might have occurred because they had the highest level of hsp70 expression. This may safeguard fish against the potential lethal consequences of extreme temperatures in the future. These findings suggested that qingbo exhibited excellent adaptability to both predictable and unpredictable temperature fluctuations, which may be associated with frequent temperature fluctuations in its natural habitat.

13.
Small ; : e2401282, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38716970

ABSTRACT

Activatable near-infrared (NIR) fluorogenic probes offer a potent tool for real-time, in situ detection of hepatic biomarkers, significantly advancing the precision in diagnosing inflammatory liver disease (ILD). However, the limited distribution of small molecule fluorogenic probes in the liver and their rapid clearance impair the accuracy of fluorescence imaging and in ILD diagnosis. In this study, an effective utilization of ionizable lipid nanoparticles (iLNPs) is presented as liver-targeted carriers for efficient delivery of fluorogenic probes, aiming to overcome biodistribution barriers and achieve accurate detection of hepatic biomarkers. Based on this strategy, a liver-targeted NIR fluorogenic nanoprobe hCy-H2O2@iLNP is prepared using hCy-H2O2 as a small molecule reporter for visualizing the over-produced hydrogen peroxide (H2O2) in situ of liver. Notably, iLNPs not only significantly enhance probe accumulation in the liver, but also enable sequence activation of fluorescent nanoprobes. This response is achieved through primary liposome-dissociation release and secondary hCy-H2O2 response with pathological H2O2, enabling high-precision detection of oxidative stress in hepatocytes. These distinctive features facilitate accurate early diagnosis of acetaminophen (APAP)-induced inflammatory liver injury as well as lipopolysaccharide (LPS)-induced hepatitis. Therefore, the organ-targeted nanoprobe design strategy showcasts great potential for early and accurate diagnosis of lesions in situ in different organs.

14.
Cell Biol Toxicol ; 40(1): 32, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38767703

ABSTRACT

BACKGROUND: Recent studies have emphasized the critical role of Telocytes (TCs)-derived exosomes in organ tissue injury and repair. Our previous research showed a significant increase in ITGB1 within TCs. Pulmonary Arterial Hypertension (PAH) is marked by a loss of microvessel regeneration and progressive vascular remodeling. This study aims to investigate whether exosomes derived from ITGB1-modified TCs (ITGB1-Exo) could mitigate PAH. METHODS: We analyzed differentially expressed microRNAs (DEmiRs) in TCs using Affymetrix Genechip miRNA 4.0 arrays. Exosomes isolated from TC culture supernatants were verified through transmission electron microscopy and Nanoparticle Tracking Analysis. The impact of miR-429-3p-enriched exosomes (Exo-ITGB1) on hypoxia-induced pulmonary arterial smooth muscle cells (PASMCs) was evaluated using CCK-8, transwell assay, and inflammatory factor analysis. A four-week hypoxia-induced mouse model of PAH was constructed, and H&E staining, along with Immunofluorescence staining, were employed to assess PAH progression. RESULTS: Forty-five miRNAs exhibited significant differential expression in TCs following ITGB1 knockdown. Mus-miR-429-3p, significantly upregulated in ITGB1-overexpressing TCs and in ITGB1-modified TC-derived exosomes, was selected for further investigation. Exo-ITGB1 notably inhibited the migration, proliferation, and inflammation of PASMCs by targeting Rac1. Overexpressing Rac1 partly counteracted Exo-ITGB1's effects. In vivo administration of Exo-ITGB1 effectively reduced pulmonary vascular remodeling and inflammation. CONCLUSIONS: Our findings reveal that ITGB1-modified TC-derived exosomes exert anti-inflammatory effects and reverse vascular remodeling through the miR-429-3p/Rac1 axis. This provides potential therapeutic strategies for PAH treatment.


Subject(s)
Exosomes , Integrin beta1 , MicroRNAs , Telocytes , rac1 GTP-Binding Protein , MicroRNAs/genetics , MicroRNAs/metabolism , Animals , Exosomes/metabolism , Exosomes/genetics , rac1 GTP-Binding Protein/metabolism , rac1 GTP-Binding Protein/genetics , Integrin beta1/metabolism , Integrin beta1/genetics , Mice , Telocytes/metabolism , Male , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/pathology , Mice, Inbred C57BL , Pulmonary Arterial Hypertension/metabolism , Pulmonary Arterial Hypertension/genetics , Pulmonary Arterial Hypertension/pathology , Hypoxia/metabolism , Hypoxia/genetics , Hypoxia/complications , Cell Proliferation/genetics , Cell Movement/genetics , Humans , Vascular Remodeling/genetics , Neuropeptides
15.
Environ Res ; 255: 119188, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38795950

ABSTRACT

The efficient use of livestock and poultry manure waste has become a global challenge, with microorganisms playing an important role. To investigate the impact of novel ammonifying microorganism cultures (NAMC) on microbial community dynamics and carbon and nitrogen metabolism, five treatments [5% (v/w) sterilized distilled water, Amm-1, Amm-2, Amm-3, and Amm-4] were applied to cow manure compost. Inoculation with NAMC improved the structure of bacterial and fungal communities, enriched the populations of the functional microorganisms, enhanced the role of specific microorganisms, and promoted the formation of tight modularity within the microbial network. Further functional predictions indicated a significant increase in both carbon metabolism (CMB) and nitrogen metabolism (NMB). During the thermophilic phase, inoculated NAMC treatments boosted carbon metabolism annotation by 10.55%-33.87% and nitrogen metabolism annotation by 26.69%-63.11. Structural equation modeling supported the NAMC-mediated enhancement of NMB and CMB. In conclusion, NAMC inoculation, particularly with Amm-4, enhanced the synergistic interaction between bacteria and fungi. This collaboration promoted enzymatic catabolic and synthetic processes, resultng in positive feedback loops with the endogenous microbial community. Understanding these mechanisms not only unravels how ammonifying microorganisms influence microbial communities but also paves the way for the development of the composting industry and global waste management practices.

16.
Plant Divers ; 46(3): 406-415, 2024 May.
Article in English | MEDLINE | ID: mdl-38798721

ABSTRACT

Bamboo plants are an essential component of tropical ecosystems, yet their vulnerability to climate extremes, such as drought, is poorly understood due to limited knowledge of their hydraulic properties. Cephalostachyum pergracile, a commonly used tropical bamboo species, exhibited a substantially higher mortality rate than other co-occurring bamboos during a severe drought event in 2019, but the underlying mechanisms remain unclear. This study investigated the leaf and stem hydraulic traits related to drought responses, including leaf-stem embolism resistance (P50leaf; P50stem) estimated using optical and X-ray microtomography methods, leaf pressure-volume and water-releasing curves. Additionally, we investigated the seasonal water potentials, native embolism level (PLC) and xylem water source using stable isotope. We found that C. pergracile exhibited strong resistance to embolism, showing low P50leaf, P50stem, and turgor loss point, despite its rapid leaf water loss. Interestingly, its leaves displayed greater resistance to embolism than its stem, suggesting a lack of effective hydraulic vulnerability segmentation (HVS) to protect the stem from excessive xylem tension. During the dry season, approximately 49% of the water was absorbed from the upper 20-cm-deep soil layer. Consequently, significant diurnal variation in leaf water potentials and an increase in midday PLC from 5.87 ± 2.33% in the wet season to 12.87 ± 4.09% in the dry season were observed. In summary, this study demonstrated that the rapid leaf water loss, high reliance on surface water, and a lack of effective HVS in C. pergracile accelerated water depletion and increased xylem embolism even in the typical dry season, which may explain its high mortality rate during extreme drought events in 2019.

17.
Animals (Basel) ; 14(9)2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38731279

ABSTRACT

The type II Na/Pi co-transporter (NaPi2b), encoded by the solute carrier (SLC) transporter 34A2 (SLC34A2), is responsible for calcium (Ca) and phosphorus (P) homeostasis. Unbalanced Ca/P metabolism induces mastitis in dairy cows. However, the specific role of SLC34A2 in regulating this imbalance in Holstein cows with clinical mastitis (CM) remains unclear. The aim of this study was to investigate the role of SLC34A2 and identify differentially expressed proteins (DEPs) that interact with SLC34A2 and are associated with Ca/P metabolism in dairy cows with CM. Immunohistochemical and immunofluorescence staining results showed that SLC34A2 was located primarily in the mammary epithelial cells of the mammary alveoli in both the control (healthy cows, Con/C) and CM groups. Compared to the Con/C group, the relative expression of the SLC34A2 gene and protein were significantly downregulated in the CM group. We identified 12 important DEPs included in 11 GO terms and two pathways interacting with SLC34A2 using data-independent acquisition proteomics. The PPI (protein-and-protein interaction) network results suggested that these DEPs were associated with ion metabolism and homeostasis, especially SLC34A2. These results demonstrate that SLC34A2 downregulation is negatively correlated with the occurrence and development of CM in Holstein cows, providing a basis for exploring the function and regulatory mechanism of SLC34A2 in Ca/P metabolism and homeostasis in Holstein cows with CM.

18.
Molecules ; 29(9)2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38731547

ABSTRACT

In order to comprehensively utilize iron ore tailings (IOTs), the possibility of using IOTs as raw materials for the preparation of cementitious composites (IOTCCs) was investigated, and IOTCC was further applied to mine interface pollution control. The mechanical properties, hydration products, wind erosion resistance, and freeze-thaw (F-T) cycle resistance of IOTCCs were evaluated rigorously. The activity index of iron tailings increased from 42% to 78% after grinding for 20 s. The IOTCC was prepared by blending 86% IOT, 10% ground granulated blast-furnace slag (GGBS), and 4% cement clinker. Meanwhile, the hydration products mainly comprised ettringite, calcium hydroxide, and C-S-H gel, and they were characterized via XRD, IR, and SEM. It was observed that ettringite and C-S-H gel were principally responsible for the strength development of IOTCC mortars with an increase in curing time. The results show that the kaolinite of the tailings was decomposed largely after mechanical activation, which promoted the cementitious property of IOT.

19.
China CDC Wkly ; 6(16): 344-349, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38736467

ABSTRACT

Introduction: Detecting poliovirus infections proves to be highly challenging due to their asymptomatic nature and infectious potential, highlighting the crucial importance of effective detection methods in the context of polio eradication efforts. In many countries, including China, the primary approach for identifying polio outbreaks has been through acute flaccid paralysis (AFP) surveillance. In this study, we conducted an evaluation spanning three decades (1993-2022) to assess the effectiveness of AFP surveillance in China. Methods: Data on all AFP cases identified since 1993 and national-level AFP surveillance system quality indicators aligned with the World Health Organization (WHO) standards were collected for analysis. The quality indicators assess surveillance sensitivity, completeness, timeliness of detection notification, case investigation, and laboratory workup. Surveillance sensitivity is determined by the non-polio AFP (NPAFP) detection rate among children under 15 years of age. Results: Between 1993 and 2022, a total of 150,779 AFP cases were identified and reported. Within this pool, surveillance identified 95 cases of wild poliovirus (WPV) and 24 cases due to vaccine-derived poliovirus. From 1995 onwards, the detection rate of NPAFP cases consistently adhered to the WHO and national standards of ≥1 case per 100,000, falling between 1.38 and 2.76. Starting in 1997, all timeliness indicators consistently achieved the criteria of 80%, apart from the consistency in meeting standards set for the rate of positive specimens sent to the national laboratory. Conclusions: AFP surveillance has been instrumental in China's accomplishment of maintaining a polio-free status. The ongoing adherence to key performance indicators, ensuring sensitivity and prompt specimen collection, demonstrates that AFP surveillance is proficient in detecting poliovirus in China. As we move into the post-eradication phase, AFP surveillance remains crucial for the sustained absence of polioviruses in the long term.

20.
Physiol Mol Biol Plants ; 30(4): 619-631, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38737324

ABSTRACT

Bletilla striata (Thunb.) Rchb.f., a medicinal plant in the Orchidaceae family, is mainly found in East Asia and has extensive pharmacological activities. Plant's volatile components are important active ingredients with a wide range of physiological activities, and B. striata has a special odor and unique volatile components. Yet it has received little attention, hindering a full understanding of its phytochemical components. Employing the ultrasonic-assisted extraction method, the volatile components of B. striata's fibrous root, bud, aerial part and tuber were extracted, resulting in yields of 0.06%, 0.64%, 3.38% and 4.47%, respectively. A total of 78 compounds were identified from their chemical profiles using gas chromatography-mass spectrometry (GC-MS), including 45 components with the main compounds of linoleic acid (content accounting for 31.23%), n-hexadecanoic acid (13.53%), and octadecanoic acid (9.5%) from the tuber, 34 components with the main compounds of eicosane, 2-methyl- (28.42%), linoelaidic acid (10.43%), linoleic acid (4.53%), and n-hexadecanoic acid (6.91%) from the fibrous root, 38 components with the main compounds of pentadeca-6,9-dien-1-ol (9.29%), n-hexadecanoic acid (11%), eicosane,2-methyl- (23.43%), and linoleic acid (23.53%) from the bud, and 27 components with the main compounds of linoelaidic acid (5.97%), n-hexadecanoic acid (15.99%), and linolenic acid ethyl ester (18.9%) from the aerial part. Additionally, the growth inhibition activity against colon cancer HCT116 cells was evaluated using sulforhodamine B (SRB) assay and the thiazolyl blue tetrazolium bromide (MTT) assay, and the accumulation of reactive oxygen species (ROS) was determined using dichloro-dihydro-fluorescein diacetate (DCFH-DA) staining and fluorescence intensity analysis. The volatile extracts exhibited significant growth inhibitory efficacy against HCT116 cells, with half-maximal inhibitory concentration (IC50) values of 3.65, 2.32, 2.42 and 3.89 mg/mL in the SRB assay, and 3.55, 2.58, 3.12 and 4.80 mg/mL in the MTT assay for the root, bud, aerial part, and tuber, respectively. Notably, treatment with the aerial part extract caused morphological changes in the cells and significantly raised the intracellular ROS level. In summary, the chemical profiles of the volatile components of B. striata were revealed for the first time, demonstrating a certain tissue specificity. Additionally, it demonstrated for the first time that these volatile extracts possess potent anti-colon cancer activity, highlighting the importance of these volatile components in B. striata's medicinal properties.

SELECTION OF CITATIONS
SEARCH DETAIL
...