Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 89
Filter
1.
Adv Mater ; : e2312812, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38839075

ABSTRACT

High-performance lithium metal anodes are crucial for the development of advanced Li metal batteries. Herein, we report a novel plasma coupled electrolyte additive strategy to prepare high-quality composite solid electrolyte interphase (SEI) on Li metal to achieve enhanced performance and stability. With the guidance of calculations, we select diethyl dibromomalonate (DB) as an additive to optimize the solvation structure of electrolytes to modify the SEI. Meanwhile, we groundbreakingly develop DB plasma technology coupled with DB electrolyte additive to construct a combinatorial SEI: inner plasma-induced SEI layer composed of LiBr and Li2CO3 plus additive-reduced SEI containing LiBr/Li2CO3/organic lithium compounds as an outer compatible layer. The optimized hybrid SEI has strong affinity toward Li+ and good mechanical properties, thereby inducing horizontal dispersion and uniform deposition of Li+ and keep structure stable. Accordingly, the symmetrical cells exhibit enhanced cycling stability for 1200 h at an overpotential of 23.8 mV with average coulombic efficiency (99.51%). Additionally, the full cells with LiNi0.8Co0.1Mn0.1O2 cathode deliver a capacity retention of 81.7% after 300 cycles at 0.5 C, and the pouch cell achieves a volumetric specific energy of ∼664 Wh L‒1. This work provides new enlightenment on plasma technology for fabrication of advanced metal anodes for energy storage. This article is protected by copyright. All rights reserved.

2.
Mol Cancer Res ; 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38842601

ABSTRACT

Ovarian cancer (OC) is one of the most common malignancies in women. Tripartite motif-containing protein 22 (TRIM22) plays an important role in the initiation and progression of malignant tumors. Similarly, the transcription factor 4 (TCF4) is an essential factor involved in the initiation and progression of many tumors. However, it is still unclear whether TRIM22 can affect TCF4 in OC. Therefore, this study aims to investigate the mechanism related to TRIM22 and TCF4 in OC. TRIM22 protein and mRNA levels were analyzed in samples from both clinical and cell lines. The effects of TRIM22 knockdown and overexpression on cell proliferation, colony formation, migration, invasion, and related biomarkers were evaluated. In addition, the role of ubiquitination-mediated degradation of TCF4 was investigated by qRT-PCR and Western blotting. The association between TRIM22 and TCF4 was evaluated by Western blotting, co-immunoprecipitation, proliferation, colony formation, invasion, migration, and related biomarkers. The results showed that the expression of TRIM22 was minimal in OC tissues. Furthermore, upregulation of TRIM22 significantly inhibited OC cell proliferation, colony formation, migration, and invasion. In addition, TRIM22 was observed to regulate the degradation of TCF4 through the ubiquitination pathway. TCF4 can reverse the effects of TRIM22 on proliferation, colony formation, migration, and invasion in OC cells. TRIM22-mediated ubiquitination of TCF4 at K48 is facilitated by the RING domain. Implications: In conclusion, ubiquitination of TCF4 protein in OC is regulated by TRIM22, which has the potential to limit the proliferation, migration, and invasion of OC.

3.
ACS Sens ; 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38829039

ABSTRACT

As a facile substitute for the invasive technique of blood testing, wearable electrochemical sensors exhibit high potential for the noninvasive and real-time monitoring of biomarkers in human sweat. However, owing to enzyme specificity, the simultaneous detection of multiple biomarkers by enzymatic analysis is challenging. Moreover, sweat accumulation under sensors causes sweat contamination, which hinders real-time biomarker detection from sweat. This study reports the design and fabrication of flexible wearable electrochemical sensors containing a composite comprising Au nanorods (AuNRs) and poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) for the nonenzymatic detection of levodopa (LD) and uric acid (UA) in sweat. Each sensor was integrated with a flexible three-electrode system and a microfluidic patch for sweat sampling. AuNRs immobilized by PEG-doped PEDOT:PSS showed excellent analytical performance for LD and UA at different potentials. Thus, the newly fabricated sensors could detect LD and UA over a broad detection range with high sensitivity and showed a low limit of detection for both species. On-body assessments confirmed the ability of these sensors to simultaneously detect LD and UA in real time. Therefore, this study could open new frontiers in the fabrication of wearable electrochemical sensors for the pharmacokinetic profile tracking of LD and gout management.

4.
Opt Express ; 32(11): 19999-20010, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38859119

ABSTRACT

Goos-Hänchen shift of total internal reflection (TIR) is the light beam movement without external driving, so envisioned to have potential manipulation of optical beams. In this article, with a silicon-on-insulator (SOI) waveguide corner structure, a variable equivalent permittivity of guided wave is modelled, and then the equivalent electric polarizabilities and the Goos-Hänchen shift of guided wave are modelled. Consequently, with a 2.0-µm SOI waveguide corner structure and an abrupt phase change of ∼0.5π caused by a vertically inserted metasurface of nanoscale semi-spheres having a 450-nm radius can reach the GH shifts of 2.1 µm for TE- and TM-mode, respectively, which are verified by both the FDTD simulation results of 1.93 µm with a reflectivity of about 62% and the experimental results of 2.0 µm with ∼60%. Therefore, this work has efficiently modelled the optical feature response of semi-sphere metasurface to guided wave and the active manipulation for the GH shifts of guided-wave, opening more opportunities to develop the new functionalities and devices for Si-based photonic integrated circuit (PIC) applications.

5.
Small ; : e2401491, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38751305

ABSTRACT

The design and fabrication of a lithiophilic skeleton are highly important for constructing advanced Li metal anodes. In this work, a new lithiophilic skeleton is reported by planting metal sulfides (e.g., Ni3S2) on vertical graphene (VG) via a facile ultrafast Joule heating (UJH) method, which facilitates the homogeneous distribution of lithiophilic sites on carbon cloth (CC) supported VG substrate with firm bonding. Ni3S2 nanoparticles are homogeneously anchored on the optimized skeleton as CC/VG@Ni3S2, which ensures high conductivity and uniform deposition of Li metal with non-dendrites. By means of systematic electrochemical characterizations, the symmetric cells coupled with CC/VG@Ni3S2 deliver a steady long-term cycle within 14 mV overpotential for 1800 h (900 cycles) at 1 mA cm-2 and 1 mAh cm-2. Meanwhile, the designed CC/VG@Ni3S2-Li||LFP full cell shows notable electrochemical performance with a capacity retention of 92.44% at 0.5 C after 500 cycles and exceptional rate performance. This novel synthesis strategy for metal sulfides on hierarchical carbon-based materials sheds new light on the development of high-performance lithium metal batteries (LMBs).

6.
Curr Opin Oncol ; 36(2): 102-114, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38441046

ABSTRACT

PURPOSE OF REVIEW: In this review, we summarized published articles on the role of tripartite motif (TRIM) family members in the initiation and development of human malignancies. RECENT FINDINGS: The ubiquitin-proteasome system (UP-S) plays a critical role in cellular activities, and UP-S dysregulation contributes to tumorigenesis. One of the key regulators of the UP-S is the tripartite motif TRIM protein family, most of which are active E3 ubiquitin ligases. TRIM proteins are critical for the biological functions of cancer cells, including migration, invasion, metastasis, and therapy resistance. Therefore, it is important to understand how TRIM proteins function at the molecular level in cancer cells. SUMMARY: We provide a comprehensive and up-to-date overview about the role TRIMs play in cancer progression and therapy resistance. We propose TRIM family members as potential new markers and targets to overcome therapy failure.


Subject(s)
Carcinogenesis , Cell Transformation, Neoplastic , Humans , Tripartite Motif Proteins , Ubiquitins
7.
ACS Appl Mater Interfaces ; 16(14): 17145-17162, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38534071

ABSTRACT

The fabrication of antifouling zwitterionic polymer brushes represents a leading approach to mitigate nonspecific adhesion on the surfaces of medical devices. This investigation seeks to elucidate the correlation between the material composition and structural attributes of these polymer brushes in preventing protein adhesion. To achieve this goal, we modeled three different zwitterionic brushes, namely, carboxybetaine methacrylate (CBMA), sulfobetaine methacrylate (SBMA), and (2-(methacryloyloxy)ethyl)-phosphorylcholine (MPC). The simulations revealed that elevating the grafting density enhances the structural stability, hydration strength, and resistance to protein adhesion exhibited by the polymer brushes. PCBMA manifests a more robust hydration layer, while PMPC demonstrates the slightest interaction with proteins. In a comprehensive evaluation, PSBMA polymer brushes emerged as the best choice with superior stability, enhanced protein repulsion, and minimally induced protein deformation, resulting in effective resistance to nonspecific adhesion. The high-density SBMA polymer brushes significantly reduce the level of protein adhesion in AFM testing. In addition, we have pioneered the quantitative characterization of hydration repulsion in polymer brushes by analyzing the hydration repulsion characteristics at different materials and graft densities. In summary, our study provides a nuanced understanding of the material and structural determinants influencing the capacity of zwitterionic polymer brushes to thwart protein adhesion. Additionally, it presents a quantitative elucidation of hydration repulsion, contributing to the advancement and application of antifouling polymer brushes.


Subject(s)
Polymers , Proteins , Polymers/chemistry , Physical Phenomena , Adsorption , Methacrylates/chemistry
8.
Adv Mater ; 36(24): e2400245, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38377331

ABSTRACT

The construction of high-quality carbon-based energy materials through biotechnology has always been an eager goal of the scientific community. Herein, juice vesicles bioreactors (JVBs) bio-technology based on hesperidium (e.g., pomelo, waxberry, oranges) is first reported for preparation of carbon-based composites with controllable components, adjustable morphologies, and sizes. JVBs serve as miniature reaction vessels that enable sophisticated confined chemical reactions to take place, ultimately resulting in the formations of complex carbon composites. The newly developed approach is highly versatile and can be compatible with a wide range of materials including metals, alloys, and metal compounds. The growth and self-assembly mechanisms of carbon composites via JVBs are explained. For illustration, NiCo alloy nanoparticles are successfully in situ implanted into pomelo vesicles crosslinked carbon (PCC) by JVBs, and their applications as sulfur/carbon cathodes for lithium-sulfur batteries are explored. The well-designed PCC/NiCo-S electrode exhibits superior high-rate properties and enhanced long-term stability. Synergistic reinforcement mechanisms on transportation of ions/electrons of interface reactions and catalytic conversion of lithium polysulfides arising from metal alloy and carbon architecture are proposed with the aid of DFT calculations. The research provides a novel biosynthetic route to rational design and fabrication of carbon composites for advanced energy storage.

9.
Acta Biomater ; 178: 111-123, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38423351

ABSTRACT

High-performance catheters are essential for interventional surgeries, requiring reliable anti-adhesive and lubricated surfaces. This article develops a strategy for constructing high-density sulfobetaine zwitterionic polymer brushes on the surface of catheters, utilizing dopamine and sodium alginate as the primary intermediate layers, where dopamine provides mussel-protein-like adhesion to anchor the polymer brushes to the catheter surface. Hydroxyl-rich sodium alginate increases the number of grafting sites and improves the grafting mass by more than 4 times. The developed high-density zwitterionic polymer brushes achieve long-lasting and effective lubricity (µ<0.0078) and are implanted in rabbits for four hours without bio-adhesion and thrombosis in the absence of anticoagulants such as heparin. Experiments and molecular dynamics simulations demonstrate that graft mass plays a decisive role in the lubricity and anti-adhesion of polymer brushes, and it is proposed to predict the anti-adhesion of polymer brushes by their lubricity to avoid costly and time-consuming bioassays during the development of amphoteric polymer brushes. A quantitative influence of hydration in the anti-adhesion properties of amphiphilic polymer brushes is also revealed. Thus, this study provides a new approach to safe, long-lasting lubrication and anticoagulant surface modification for medical devices in contact with blood. STATEMENT OF SIGNIFICANCE: High friction and bioadhesion on medical device surfaces can pose a significant risk to patients. In response, we have developed a safer, simpler, and more application-specific surface modification strategy that addresses both the lubrication and anti-bioadhesion needs of medical device surfaces. We used dopamine and sodium alginate as intermediate layers to drastically increase the grafting density of the zwitterionic brushes and enabled the modified surfaces to have an extremely low coefficient of friction (µ = 0.0078) and to remain non-bioadhesive for 4 hours in vivo. Furthermore, we used molecular dynamics simulations to gain insight into the mechanisms behind the superior anti-adhesion properties of the high-density polymer brushes. Our work contributes to the development and application of surface-modified coatings.


Subject(s)
Fibrinolytic Agents , Polymers , Animals , Humans , Rabbits , Polymers/pharmacology , Dopamine , Lubrication , Surface Properties , Alginates/pharmacology
10.
Int J Biol Macromol ; 260(Pt 2): 129341, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38218272

ABSTRACT

Diabetic retinopathy (DR) is one of the most prevalent severe diabetic microvascular complications caused by hyperglycemia. Deciphering the underlying mechanism of vascular injury and finding ways to alleviate hyperglycemia induced microvascular complications is of great necessity. In this study, we identified that a compound ent-9α-hydroxy-15-oxo-16-kauren-19-oic acid (EKO), the diterpenoid isolated and purified from Pteris semipinnata L., exhibited good protective roles against vascular endothelial injury associated with diabetic retinopathy in vitro and in vivo. To further uncover the underlying mechanism, we used unbiased transcriptome sequencing analysis and showed substantial impairment in the focal adhesion pathway upon high glucose and IL-1ß stimulation. EKO could effectively improve endothelial focal adhesion pathway by enhancing the expression of two focal adhesion proteins Vinculin and ITGA11. We found that c-fos protein was involved in regulating the expression of Vinculin and ITGA11, a transcription factor component that was downregulated by high glucose and IL-1ß stimulation and recovered by EKO. Mechanically, EKO facilitated the binding of deubiquitylation enzyme ATXN3 to c-fos protein and promoted its deubiquitylation, thereby elevating its protein level to enhance the expression of Vinculin and ITGA11. Besides, EKO effectively suppressed ROS production and restored mitochondrial function. In vivo studies, we confirmed EKO could alleviate some of the indicators of diabetic mice. In addition, protein levels of ATXN3 and focal adhesion Vinculin molecule were also verified in vivo. Collectively, our findings addressed the endothelial protective role of natural diterpenoid EKO, with emphasize of mechanism on ATXN3/c-fos/focal adhesion signaling pathway as well as oxygen stress suppression, implicating its therapeutic potential in alleviating vascular endothelium injury and diabetic retinopathy.


Subject(s)
Diabetes Mellitus, Experimental , Diabetic Retinopathy , Epoxy Resins , Hyperglycemia , Mice , Animals , Diabetic Retinopathy/drug therapy , Diabetic Retinopathy/metabolism , Endothelium, Vascular , Vinculin , Diabetes Mellitus, Experimental/metabolism , Focal Adhesions , Proto-Oncogene Proteins c-fos , Hyperglycemia/drug therapy , Hyperglycemia/metabolism , Cell Adhesion Molecules/metabolism , Glucose/metabolism
11.
Chemistry ; 30(19): e202304168, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38264940

ABSTRACT

"Carbon Peak and Carbon Neutrality" is an important strategic goal for the sustainable development of human society. Typically, a key means to achieve these goals is through electrochemical energy storage technologies and materials. In this context, the rational synthesis and modification of battery materials through new technologies play critical roles. Plasma technology, based on the principles of free radical chemistry, is considered a promising alternative for the construction of advanced battery materials due to its inherent advantages such as superior versatility, high reactivity, excellent conformal properties, low consumption and environmental friendliness. In this perspective paper, we discuss the working principle of plasma and its applied research on battery materials based on plasma conversion, deposition, etching, doping, etc. Furthermore, the new application directions of multiphase plasma associated with solid, liquid and gas sources are proposed and their application examples for batteries (e. g. lithium-ion batteries, lithium-sulfur batteries, zinc-air batteries) are given. Finally, the current challenges and future development trends of plasma technology are briefly summarized to provide guidance for the next generation of energy technologies.

12.
Small ; 20(16): e2307579, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38044290

ABSTRACT

The design and fabrication of novel carbon hosts with high conductivity, accelerated electrochemical catalytic activities, and superior physical/chemical confinement on sulfur and its reaction intermediates polysulfides are essential for the construction of high-performance C/S cathodes for lithium-sulfur batteries (LSBs). In this work, a novel biofermentation coupled gel composite assembly technology is developed to prepare cross-linked carbon composite hosts consisting of conductive Rhizopus hyphae carbon fiber (RHCF) skeleton and lamellar sodium alginate carbon (SAC) uniformly implanted with polarized nanoparticles (V2O3, Ag, Co, etc.) with diameters of several nanometers. Impressively, the RHCF/SAC/V2O3 composites exhibit enhanced physical/chemical adsorption of polysulfides due to the synergistic effect between hierarchical pore structures, heteroatoms (N, P) doping, and polar V2O3 generation. Additionally, the catalytic conversion kinetics of cathodes are effectively improved by regulating the 3D carbon structure and optimizing the V2O3 catalyst. Consequently, the LSBs assembled with RHCF/SAC/V2O3-S cathode show exceptional cycle stability (capacity retention rate of 94.0% after 200 cycles at 0.1 C) and excellent rate performance (specific capacity of 578 mA h g-1 at 5 C). This work opens a new door for the fabrication of hyphae carbon composites via fermentation for electrochemical energy storage.

13.
Int J Biol Macromol ; 254(Pt 3): 127653, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37918597

ABSTRACT

Thrombosis of extracorporeal circuits causes significant morbidity and mortality worldwide. In this study, plasma treatment technology and chemical grafting method were used to construct heparinized surfaces on the PVC substrate, which could not only reduce thrombosis but also decrease the side effects of the direct injection of anticoagulants. The PVC substrate was modified by plasma treatment technology firstly to obtain the active surface with the hydroxyl groups used for grafting. Then, heparin was grafted onto the modified PVC surface using different grafting strategies to prepare different heparinized surfaces. The experimental results indicated that the sodium alginate (SA) and carboxymethyl chitosan (CCS) used as interlayers could significantly increase the graft density of heparin to improve the anticoagulant effects and hemocompatibility of heparinized surfaces. In addition, the modification of heparin can further improve the anticoagulant effects. The CCS/low-molecular-weight heparin (LWMH) surface has the best anticoagulant properties, which can prolong the activated partial thromboplastin time (APTT) values of human plasma for about 35 s, reduce the hemolysis rates to <0.3 %, and perform well in the in-vitro blood circulation test. The heparinized surfaces prepared in this work have great application potential in anticoagulant treatment for medical devices.


Subject(s)
Chitosan , Thrombosis , Humans , Heparin/pharmacology , Heparin/chemistry , Polyvinyl Chloride , Chitosan/chemistry , Alginates , Anticoagulants/pharmacology , Anticoagulants/chemistry , Partial Thromboplastin Time
14.
Small ; 20(15): e2306381, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38013253

ABSTRACT

All-solid-state lithium metal batteries (LMBs) are regarded as one of the most viable energy storage devices and their comprehensive properties are mainly controlled by solid electrolytes and interface compatibility. This work proposes an advanced poly(vinylidene fluoride-hexafluoropropylene) based gel polymer electrolyte (AP-GPEs) via functional superposition strategy, which involves incorporating butyl acrylate and polyethylene glycol diacrylate as elastic optimization framework, triethyl phosphate and fluoroethylene carbonate as flameproof liquid plasticizers, and Li7La3Zr2O12 nanowires (LLZO-w) as ion-conductive fillers, endowing the designed AP-GPEs/LLZO-w membrane with high mechanical strength, excellent flexibility, low flammability, low activation energy (0.137 eV), and improved ionic conductivity (0.42 × 10-3 S cm-1 at 20 °C) due to continuous ionic transport pathways. Additionally, the AP-GPEs/LLZO-w membrane shows good safety and chemical/electrochemical compatibility with the lithium anode, owing to the synergistic effect of LLZO-w filler, flexible frameworks, and flame retardants. Consequently, the LiFePO4/Li batteries assembled with AP-GPEs/LLZO-w electrolyte exhibit enhanced cycling performance (87.3% capacity retention after 600 cycles at 1 C) and notable high-rate capacity (93.3 mAh g-1 at 5 C). This work proposes a novel functional superposition strategy for the synthesis of high-performance comprehensive GPEs for LMBs.

15.
Acta Biomater ; 175: 76-105, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38128641

ABSTRACT

The lubrication modification of biomedical devices significantly enhances the functionality of implanted interventional medical devices, thereby providing additional benefits for patients. Polymer brush coating provides a convenient and efficient method for surface modification while ensuring the preservation of the substrate's original properties. The current research has focused on a "trial and error" method to finding polymer brushes with superior lubricity qualities, which is time-consuming and expensive, as obtaining effective and long-lasting lubricity properties for polymer brushes is difficult. This review summarizes recent research advances in the biomedical field in the design, material selection, preparation, and characterization of lubricating and antifouling polymer brushes, which follow the polymer brush development process. This review begins by examining various approaches to polymer brush design, including molecular dynamics simulation and machine learning, from the fundamentals of polymer brush lubrication. Recent advancements in polymer brush design are then synthesized and potential avenues for future research are explored. Emphasis is placed on the burgeoning field of zwitterionic polymer brushes, and highlighting the broad prospects of supramolecular polymer brushes based on host-guest interactions in the field of self-repairing polymer brush applications. The review culminates by providing a summary of methodologies for characterizing the structural and functional attributes of polymer brushes. It is believed that a development approach for polymer brushes based on "design-material selection-preparation-characterization" can be created, easing the challenge of creating polymer brushes with high-performance lubricating qualities and enabling the on-demand creation of coatings. STATEMENT OF SIGNIFICANCE: Biomedical devices have severe lubrication modification needs, and surface lubrication modification by polymer brush coating is currently the most promising means. However, the design and preparation of polymer brushes often involves "iterative testing" to find polymer brushes with excellent lubrication properties, which is both time-consuming and expensive. This review proposes a polymer brush development process based on the "design-material selection-preparation-characterization" strategy and summarizes recent research advances and trends in the design, material selection, preparation, and characterization of polymer brushes. This review will help polymer brush researchers by alleviating the challenges of creating polymer brushes with high-performance lubricity and promises to enable the on-demand construction of polymer brush lubrication coatings.


Subject(s)
Molecular Dynamics Simulation , Polymers , Humans , Polymers/chemistry , Prostheses and Implants
16.
J Phys Chem A ; 127(42): 8935-8942, 2023 Oct 26.
Article in English | MEDLINE | ID: mdl-37844321

ABSTRACT

NH2SO3H is an effective nucleation agent for the formation of atmospheric aerosols and cloud particles. So, the ammonolysis of SO3 to form NH2SO3H without and with neutral (H2O) and basic (NH3) trace gases has been extensively investigated. However, the acidic trace gas X (X = H2SO4 and CH3SO3H)-assisted ammonolysis of SO3 is still up for debate. In this work, a comprehensive theoretical investigation of X-assisted ammonolysis of SO3 and its reverse reaction (the isomerization of NH2SO3H to form SO3-···NH3+) was carried out in the gas phase and at the air-water interface. The gas-phase results show that X-assisted isomerization of NH2SO3H to form SO3-···NH3+ is more energetically and kinetically favorable than its reverse reaction and the isomerization of NH2SO3H in the presence of H2O and NH3. Such unexpected findings revealed that gas-phase NH2SO3H is highly reactive in the presence of acidic trace gas in contrast to the high stability of NH2SO3H in neutral and basic conditions. At the air-water interface, the X-assisted isomerization reaction of NH2SO3H involves multiple water molecules. The loop structure of the reaction center (X···NH2SO3H···3H2O) promotes the transfer of protons in the water molecules to form the SO3-···NH3+ ion pair, which can then interact with several interfacial water molecules to form ammonium bisulfate. These interfacial reaction channels follow a stepwise mechanism and proceed at the picosecond time-scale. The findings of this study will contribute to a better understanding of the atmospheric behavior of NH2SO3H in polluted acidic trace gases.

17.
Materials (Basel) ; 16(18)2023 Sep 14.
Article in English | MEDLINE | ID: mdl-37763491

ABSTRACT

Polyimide (PI) films are widely used in electronic devices owing to their excellent mechanical and electrical properties and high thermal and chemical stabilities. In particular, PI films play an important role in flexible printed circuit boards (FPCBs). However, one challenge currently faced with their use is that the adhesives used in FPCBs cause a high dielectric loss in high-frequency applications. Therefore, it is envisioned that PI films with a low dielectric loss and Cu films can be used to prepare two-layer flexible copper-clad laminates (FCCLs) without any adhesive. However, the preparation of ultra-thin FCCLs with no adhesives is difficult owing to the low peel strength between PI films and Cu films. To address this technical challenge, an FCCL with no adhesive was prepared via high-power helicon wave plasma (HWP) treatment. Field-emission scanning electron microscopy (FE-SEM), X-ray photoelectron spectroscopy (XPS), and X-ray diffraction (XRD) were tested. Also, the surface roughness of the PI film and the peel strength between the PI film and Cu film were measured. The experimental results show that the surface roughness of the PI film increased by 40-65% and the PI film demonstrated improved adhesion (the peel strength was >8.0 N/cm) with the Cu film following plasma treatment and Cu plating.

18.
Heliyon ; 9(8): e18933, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37636358

ABSTRACT

This paper uses the China Family Panel Studies' micro-level data and the ordered logit model to study intergenerational transmission of education and examines whether the nine-year compulsory schooling system affects equity in education. The results show that when parents have higher educational attainments, their children will have higher educational attainments. Full-sample results show that when the mother has higher education, the probability that her children have higher education increases by 7.97%, whereas for the sub-sample after the compulsory schooling policy carried out, the probability increases by 22.42%. We find that the compulsory schooling system strengthens intergenerational transmission of education in the level of higher education. An implication is that the compulsory schooling system may promote equity in compulsory education but does not promote equity in higher education.

19.
Nano Lett ; 23(17): 8319-8325, 2023 Sep 13.
Article in English | MEDLINE | ID: mdl-37643363

ABSTRACT

Although the topological band theory is applicable to both Fermionic and bosonic systems, the same electronic and phononic topological phases are seldom reported in one natural material. In this work, we show the presence of a dual-higher-order topology in hydrogen-substituted graphdiyne (H-GDY) by first-principles calculations. The intriguing enantiomorphic flat-bands are realized in both electronic and phononic bands of H-GDY, which is confirmed to be an organic 2D second-order topological insulator (SOTI). Most importantly, we found that the topological corner states are pseudospin polarized in H-GDY, exhibiting a clockwise or counterclockwise texture perpendicular to the radial direction. Our results not only identify the existence of the dual-higher-order topology in covalent organic frameworks but also uncover a unique pseudospin polarization-coordinate locking relation, further extending the well-known spin-momentum locking relation in conventional topological insulators.

20.
Phys Chem Chem Phys ; 25(34): 22920-22926, 2023 Aug 30.
Article in English | MEDLINE | ID: mdl-37591826

ABSTRACT

Na3PS4 crystals with high ionic conductivity are promising solid-state electrolytes. Here, a novel phase of Na3PS4 (ß'-NPS) crystallizing in a cubic lattice with a space group of P4̄3m was systematically investigated using first-principles calculations. First of all, ß'-NPS is determined to be thermodynamically, dynamically and mechanically stable. The phase transition from tetragonal Na3PS4(α-NPS) to a cubic ß'-NPS system occurs at approximately 480 K, suggesting high feasibility of experimental access. Moreover, the ß'-NPS is an insulator with a large band gap of 4.05 eV and a low migration energy barrier of 0.10 eV for an interstitial Na ion. Significantly, a novel Na ion diffusion mechanism, that is, interstitial diffusion, is proposed, in contrast to traditional vacancy diffusion or kick-off diffusion as observed in most solid electrolytes. This work proposes ß'-NPS as a promising superionic conductor for sodium ion batteries and provides theoretical guidance towards designing future ideal solid-state electrolytes.

SELECTION OF CITATIONS
SEARCH DETAIL
...