Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 652
Filter
1.
Chem Soc Rev ; 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39005214

ABSTRACT

Understanding the electronic structure of active sites is crucial in efficient catalyst design. The spin state, spin configurations of d-electrons, has been frequently discussed recently. However, its systematic depiction in electrocatalysis is lacking. In this tutorial review, a comprehensive interpretation of the spin state of metal centers in electrocatalysts and its role in electrocatalysis is provided. This review starts with the basics of spin states, including molecular field theory, crystal field theory, and ligand field theory. It further introduces the differences in low spin, intermediate spin, and high spin, and intrinsic factors affecting the spin state. Popular characterization techniques and modeling approaches that can reveal the spin state, such as X-ray absorption microscopy, electron spin resonance spectroscopy, Mössbauer spectroscopy, and density functional theory (DFT) calculations, are introduced as well with examples from the literature. The examples include the most recent progress in tuning the spin state of metal centers for various reactions, e.g., the oxygen evolution reaction, oxygen reduction reaction, hydrogen evolution reaction, carbon dioxide reduction reaction, nitrogen reduction reaction, nitrate reduction reaction, and urea oxidation reaction. Challenges and potential implications for future research related to the spin state are discussed at the end.

2.
Zool Res ; 45(4): 937-950, 2024 07 18.
Article in English | MEDLINE | ID: mdl-39021082

ABSTRACT

Autophagy plays a pivotal role in diverse biological processes, including the maintenance and differentiation of neural stem cells (NSCs). Interestingly, while complete deletion of Fip200 severely impairs NSC maintenance and differentiation, inhibiting canonical autophagy via deletion of core genes, such as Atg5, Atg16l1, and Atg7, or blockade of canonical interactions between FIP200 and ATG13 (designated as FIP200-4A mutant or FIP200 KI) does not produce comparable detrimental effects. This highlights the likely critical involvement of the non-canonical functions of FIP200, the mechanisms of which have remained elusive. Here, utilizing genetic mouse models, we demonstrated that FIP200 mediates non-canonical autophagic degradation of p62/sequestome1, primarily via TAX1BP1 in NSCs. Conditional deletion of Tax1bp1 in fip200 hGFAP conditional knock-in (cKI) mice led to NSC deficiency, resembling the fip200 hGFAP conditional knockout (cKO) mouse phenotype. Notably, reintroducing wild-type TAX1BP1 not only restored the maintenance of NSCs derived from tax1bp1-knockout fip200 hGFAP cKI mice but also led to a marked reduction in p62 aggregate accumulation. Conversely, a TAX1BP1 mutant incapable of binding to FIP200 or NBR1/p62 failed to achieve this restoration. Furthermore, conditional deletion of Tax1bp1 in fip200 hGFAP cKO mice exacerbated NSC deficiency and p62 aggregate accumulation compared to fip200 hGFAP cKO mice. Collectively, these findings illustrate the essential role of the FIP200-TAX1BP1 axis in mediating the non-canonical autophagic degradation of p62 aggregates towards NSC maintenance and function, presenting novel therapeutic targets for neurodegenerative diseases.


Subject(s)
Autophagy-Related Proteins , Autophagy , Neural Stem Cells , Animals , Neural Stem Cells/physiology , Neural Stem Cells/metabolism , Mice , Autophagy/physiology , Autophagy-Related Proteins/genetics , Autophagy-Related Proteins/metabolism , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Mice, Knockout , Sequestosome-1 Protein/metabolism , Sequestosome-1 Protein/genetics , Gene Expression Regulation , Neoplasm Proteins
3.
Article in English | MEDLINE | ID: mdl-38957929

ABSTRACT

AIM: Major depressive disorder (MDD) is a prevalent psychiatric condition and vortioxetine offers promising antidepressant effects due to its unique pharmacological profile. However, the dose-response relationships of vortioxetine for MDD is not well established. We aimed to conduct dose-response meta-analyses to fill this gap. METHODS: We systematically searched multiple electronic databases for randomized controlled trials of vortioxetine for MDD, with the last search conducted on 08 February, 2024. The dose-response relationship was evaluated using a one-stage random-effects dose-response meta-analysis with restricted cubic spline model. The primary outcome was efficacy (mean change in depression scale score), with secondary outcomes including response, dropout for any reasons (acceptability), dropout for adverse events (tolerability), and any adverse events (safety). RESULTS: The dose-response meta-analysis comprised 16 studies, with 4,294 participants allocated to the vortioxetine group and 2,299 participants allocated to the placebo group. The estimated 50% effective dose was 4.37 mg/day, and the near-maximal effective dose (95% effective dose) was 17.93 mg/day. Visual inspection of the dose-efficacy curve suggests that a plateau possibly had not been reached yet at 20 mg/day. Acceptability, tolerability and safety decreased as the dose increased. Subgroup analysis indicated that no significant differences were observed in acceptability, tolerability and safety among the dosage groups. CONCLUSIONS: Vortioxetine may potentially provide additional therapeutic benefits when exceeding the current licensed dosage without significantly impacting safety. Conducting clinical trials exceeding the current approved dosage appears necessary to fully comprehend its efficacy and risk.

4.
J Chem Theory Comput ; 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38966989

ABSTRACT

Molecular docking remains an indispensable tool in computational biology and structure-based drug discovery. However, the correct prediction of binding poses remains a major challenge for molecular docking, especially for target proteins where a substrate binding induces significant reorganization of the active site. Here, we introduce an Induced Fit Docking (IFD) approach named AA/UA/CG-SA-IFD, which combines a hybrid All-Atom/United-Atom/Coarse-Grained model with Simulated Annealing. In this approach, the core region is represented by the All-Atom(AA) model, while the protein environment beyond the core region and the solvent are treated with either the United-Atom (UA) or the Coarse-Grained (CG) model. By combining the Elastic Network Model (ENM) for the CG region, the hybrid model ensures a reasonable description of ligand binding and the environmental effects of the protein, facilitating highly efficient and reliable sampling of ligand binding through Simulated Annealing (SA) at a high temperature. Upon validation with two testing sets, the AA/UA/CG-SA-IFD approach demonstrates remarkable accuracy and efficiency in induced fit docking, even for challenging cases where the docked poses significantly deviate from crystal structures.

5.
Gut Pathog ; 16(1): 35, 2024 Jul 07.
Article in English | MEDLINE | ID: mdl-38972976

ABSTRACT

An increasing number of studies have shown that the consumption of soybeans and soybeans products is beneficial to human health, and the biological activity of soy products may be attributed to the presence of Soy Isoflavones (SI) in soybeans. In the intestinal tracts of humans and animals, certain specific bacteria can metabolize soy isoflavones into equol. Equol has a similar chemical structure to endogenous estradiol in the human body, which can bind with estrogen receptors and exert weak estrogen effects. Therefore, equol plays an important role in the occurrence and development of a variety of hormone-dependent malignancies such as breast cancer and prostate cancer. Despite the numerous health benefits of equol for humans, only 30-50% of the population can metabolize soy isoflavones into equol, with individual variation in gut microbiota being the main reason. This article provides an overview of the relevant gut microbiota involved in the synthesis of equol and its anti-tumor effects in various types of cancer. It also summarizes the molecular mechanisms underlying its anti-tumor properties, aiming to provide a more reliable theoretical basis for the rational utilization of equol in the field of cancer treatment.

6.
Sci Data ; 11(1): 600, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38849436

ABSTRACT

A scalable, reusable, and broad-coverage unified material knowledge representation shows its importance and will bring great benefits to data sharing among materials communities. A knowledge graph (KG) for materials terminology, which is a formal collection of term entities and relationships, is conceptually important to achieve this goal. In this work, we propose a KG for materials terminology, named Materials Genome Engineering Database Knowledge Graph (MGED-KG), which is automatically constructed from text corpus via natural language processing. MGED-KG is the most comprehensive KG for materials terminology in both Chinese and English languages, consisting of 8,660 terms and their explanations. It encompasses 11 principal categories, such as Metals, Composites, Nanomaterials, each with two or three levels of subcategories, resulting in a total of 235 distinct category labels. For further application, a knowledge web system based on MGED-KG is developed and shows its great power in improving data sharing efficiency from the aspects of query expansion, term, and data recommendation.

7.
Biomed Pharmacother ; 177: 117031, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38925016

ABSTRACT

An expanding body of research indicates a correlation between the gut microbiota and various diseases. Metabolites produced by the gut microbiota act as mediators between the gut microbiota and the host, interacting with multiple systems in the human body to regulate physiological or pathological functions. However, further investigation is still required to elucidate the underlying mechanisms. One such metabolite involved in choline metabolism by gut microbes is trimethylamine (TMA), which can traverse the intestinal epithelial barrier and enter the bloodstream, ultimately reaching the liver where it undergoes oxidation catalyzed by flavin-containing monooxygenase 3 (FMO3) to form trimethylamine N-oxide (TMAO). While some TMAO is eliminated through renal excretion, remaining amounts circulate in the bloodstream, leading to systemic inflammation, endoplasmic reticulum (ER) stress, mitochondrial stress, and disruption of normal physiological functions in humans. As a representative microbial metabolite originating from the gut, TMAO has significant potential both as a biomarker for monitoring disease occurrence and progression and for tailoring personalized treatment strategies for patients. This review provides an extensive overview of TMAO sources and its metabolism in human blood, as well as its impact on several major human diseases. Additionally, we explore the latest research areas related to TMAO along with future directions.

8.
Int Immunopharmacol ; 138: 112552, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38917521

ABSTRACT

Atopic dermatitis (AD) is a prevalent inflammatory skin condition characterized by a multifaceted pathogenesis, which encompasses immune system signaling dysregulation, compromised skin barrier function, and genetic influencers. Sacha inchi (Plukenetia volubilis L.) oil (SIO) has demonstrated potent anti-inflammatory and antioxidant properties, however, the mechanism underlying the beneficial effects of SIO on AD remains unclear. This study aims to investigate the anti-AD effect of SIO and its possible molecular mechanism in mice with AD. The results demonstrated that SIO significantly reduced the degree of skin lesions and scratching, and improved the skin thickness and mast cell infiltration in AD mice. Furthermore, SIO significantly reduced the levels of immunoglobulin E, histamine and thymic stromal lymphopoietin in serum of AD mice. Additionally, it inhibited the expression of tumor necrosis factor-γ, interferon-γ, interleukin-2, interleukin-4, interleukin 1ß and other inflammatory cytokines in the lesions skin of mice. The Western blotting analysis revealed that SIO exhibited an upregulatory effect on the protein expression of filaggrin and loricrin, while concurrently exerting inhibitory effects on the protein expression and phosphorylation levels of P38, ERK, NF-κB, and IκBα within their respective signaling pathways. Consequently, it can be inferred that SIO exerts a significant anti-atopic dermatitis effect by modulating the P38, ERK, NF-κB, and IκBα signaling pathways. This study contributes to expand the research and development potential of SIO, and provides novel insights and potential therapeutic strategies for AD treatment.

9.
Cell Rep ; 43(7): 114387, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38896777

ABSTRACT

The ongoing emergence of SARS-CoV-2 variants poses challenges to the immunity induced by infections and vaccination. We conduct a 6-month longitudinal evaluation of antibody binding and neutralization of sera from individuals with six different combinations of vaccination and infection against BA.5, XBB.1.5, EG.5.1, and BA.2.86. We find that most individuals produce spike-binding IgG or neutralizing antibodies against BA.5, XBB.1.5, EG.5.1, and BA.2.86 2 months after infection or vaccination. However, compared to ancestral strain and BA.5 variant, XBB.1.5, EG.5.1, and BA.2.86 exhibit comparable but significant immune evasion. The spike-binding IgG and neutralizing antibody titers decrease in individuals without additional antigen exposure, and <50% of individuals neutralize XBB.1.5, EG.5.1, and BA.2.86 during the 6-month follow-up. Approximately 57% of the 107 followed up individuals experienced an additional infection, leading to improved binding IgG and neutralizing antibody levels against these variants. These findings provide insights into the impact of SARS-CoV-2 variants on immunity following repeated exposure.

10.
BJU Int ; 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38890150

ABSTRACT

OBJECTIVE: To comprehensively review and critically assess the literature on microbiota differences between patients with interstitial cystitis (IC)/bladder pain syndrome (BPS) and normal controls and to provide clinical practice guidelines. MATERIALS AND METHODS: In this systematic review, we evaluated previous research on microbiota disparities between IC/BPS and normal controls, as well as distinctions among IC/BPS subgroups. A comprehensive literature search was conducted across PubMed/MEDLINE, EMBASE, Web of Science, and the Cochrane Central Register of Controlled Trials. Relevant studies were shortlisted based on predetermined inclusion and exclusion criteria, followed by quality assessment. The primary focus was identifying specific taxonomic variations among these cohorts. RESULTS: A total of 12 studies met the selection criteria. Discrepancies were adjudicated by a third reviewer. The Newcastle-Ottawa Scale was used to assess study quality. Predominantly, the studies focused on disparities in urine microbiota between IC/BPS patients and normal controls, with one study examining gut microbiota differences between the groups, and two studies exploring vaginal microbiota distinctions. Unfortunately, analyses of discrepancies in other microbiota were limited. Our findings revealed evidence of distinct bacterial abundance variations, particularly involving Lactobacillus, alongside variations in specific metabolites among IC/BPS patients compared to controls. CONCLUSIONS: Currently, there is evidence suggesting significant variations in the diversity and species composition of the urinary microbiota between individuals diagnosed with IC/BPS and control groups. In the foreseeable future, urologists should consider urine microbiota dysbiosis as a potential aetiology for IC, with potential clinical implications for diagnosis and treatment.

11.
Article in English | MEDLINE | ID: mdl-38878175

ABSTRACT

PURPOSE: 18F-labelled somatostatin receptor (SSTR) analogs offer several advantages over 68Ga in terms of yield, cost, spatial resolution and detection rate. This study presents an interim analysis of a prospective trial designed to assess the safety, biodistribution and dosimetry of [18F]AlF-NOTA-LM3, and compare its diagnostic efficacy and clinical management outcomes with [68Ga]Ga-DOTATATE or [68Ga]Ga-NODAGA-LM3 in patients with well-differentiated NETs. METHODS: Twenty-one patients with histologically confirmed well-differentiated neuroendocrine tumors (G1 and G2) were prospectively recruited. The first eight patients underwent serial PET scans at 5, 15, 30, 45, 60, and 120 min after [18F]AlF-NOTA-LM3 injection to assess biodistribution and dosimetry. The remaining patients underwent whole-body PET/CT scans. [18F]AlF-NOTA-LM3 and [68Ga]Ga-DOTATATE PET/CT were done within a week, with a minimum 24-hour interval between the two scans. Focal uptake above the surrounding background activity and could not be explained by physiologic uptake was considered lesions of NETs. Lesion number, tumor uptake, and tumor-to-background ratio (TBR) were compared. In patients with discrepant findings, the size of the smallest lesions (measured on coregistered CT) detected on [68Ga]Ga-DOTATATE and [18F]AlF-NOTA-LM3 was compared. RESULTS: [18F]AlF-NOTA-LM3 was safe and well-tolerated. Physiological uptake of [18F]AlF-NOTA-LM3 was significantly lower than that of [68Ga]Ga-DOTATATE in abdominal organs and bone marrow, but higher in blood pool and lung. The mean effective dose was 0.024 ± 0.014 mSv/MBq. [18F]AlF-NOTA-LM3 detected significantly more liver lesions (457 vs. 291, P = 0.006) and lymph node lesions (30 vs. 22, P = 0.011) compared to [68Ga]Ga-DOTATATE. The tumor uptake was comparable, but TBR was significantly higher with [18F]AlF-NOTA-LM3 for lesions from all sites except for the duodenum. The size of the minimum liver lesions (0.54 ± 0.15 vs. 1.01 ± 0.49, P<0.001) and lymph node lesions (0.50 ± 0.19 vs. 1.26 ± 0.86, P = 0.024) detected on [18F]ALF-NOTA-LM3 were significantly smaller than those detected on [68Ga]Ga-DOTATATE. CONCLUSION: [18F]AlF-NOTA-LM3 shows favorable biodistribution, higher spatial resolution and superior performance than [68Ga]Ga-DOTATATE in detecting liver and lymph node metastases, with higher TBR. Notably, it is the first SSTR analog to show superiority in detecting lymph node lesions when compared to [68Ga]Ga-DOTATATE. TRIAL REGISTRATION: ClinicalTrials.gov identifier NCT06056362.

13.
Environ Pollut ; 355: 124211, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38795820

ABSTRACT

Exposure to pesticide could contribute to neurodevelopmental and neurodegenerative disorders. Notably, research suggests that prenatal or early postnatal exposure to paraquat (PQ), an herbicide, might trigger neurodevelopmental toxicity in neural stem cells (NSCs) via oxidative stress. However, the molecular mechanisms of PQ-induced perturbations in NSCs, particularly at the metabolite level, are not fully understood. Using a dose-response metabolomics approach, we examined metabolic changes in murine NSCs exposed to different PQ doses (0, 10, 20, 40 µM) for 24h. At 20 µM, PQ treatment led to significant metabolic alterations, highlighting unique toxic mechanisms. Metabolic perturbations, mainly affecting amino acid metabolism pathways (e.g., phenylalanine, tyrosine, arginine, tryptophan, and pyrimidine metabolism), were associated with oxidative stress, mitochondrial dysfunction, and cell cycle dysregulation. Dose-response models were used to identify potential biomarkers (e.g., Putrescine, L-arginine, ornithine, L-histidine, N-acetyl-L-phenylalanine, thymidine) reflecting early damage from low-dose PQ exposure. These biomarkers could be used as points of departure (PoD) for characterizing PQ exposure hazard in risk assessment. Our study offers insights into mechanisms and risk assessment related to PQ-induced neurotoxicity in NSCs.


Subject(s)
Biomarkers , Herbicides , Metabolomics , Neural Stem Cells , Oxidative Stress , Paraquat , Animals , Neural Stem Cells/drug effects , Neural Stem Cells/metabolism , Mice , Paraquat/toxicity , Biomarkers/metabolism , Herbicides/toxicity , Oxidative Stress/drug effects , Risk Assessment , Dose-Response Relationship, Drug
14.
Front Cell Infect Microbiol ; 14: 1395239, 2024.
Article in English | MEDLINE | ID: mdl-38774626

ABSTRACT

Background: Traditional microbiological detection methods used to detect pulmonary infections in people living with HIV (PLHIV) are usually time-consuming and have low sensitivity, leading to delayed treatment. We aimed to evaluate the diagnostic value of metagenomics next-generation sequencing (mNGS) for microbial diagnosis of suspected pulmonary infections in PLHIV. Methods: We retrospectively analyzed PLHIV who were hospitalized due to suspected pulmonary infections at the sixth people hospital of Zhengzhou from November 1, 2021 to June 30, 2022. Bronchoalveolar lavage fluid (BALF) samples of PLHIV were collected and subjected to routine microbiological examination and mNGS detection. The diagnostic performance of the two methods was compared to evaluate the diagnostic value of mNGS for unknown pathogens. Results: This study included a total of 36 PLHIV with suspected pulmonary infections, of which 31 were male. The reporting period of mNGS is significantly shorter than that of CMTs. The mNGS positive rate of BALF samples in PLHIV was 83.33%, which was significantly higher than that of smear and culture (44.4%, P<0.001). In addition, 11 patients showed consistent results between the two methods. Futhermore, mNGS showed excellent performance in identifying multi-infections in PLHIV, and 27 pathogens were detected in the BALF of 30 PLHIV by mNGS, among which 15 PLHIV were found to have multiple microbial infections (at least 3 pathogens). Pneumocystis jirovecii, human herpesvirus type 5, and human herpesvirus type 4 were the most common pathogen types. Conclusions: For PLHIV with suspected pulmonary infections, mNGS is capable of rapidly and accurately identifying the pathogen causing the pulmonary infection, which contributes to implement timely and accurate anti-infective treatment.


Subject(s)
Bronchoalveolar Lavage Fluid , HIV Infections , High-Throughput Nucleotide Sequencing , Metagenomics , Humans , High-Throughput Nucleotide Sequencing/methods , Metagenomics/methods , Male , Female , HIV Infections/complications , HIV Infections/virology , Retrospective Studies , Bronchoalveolar Lavage Fluid/microbiology , Bronchoalveolar Lavage Fluid/virology , Adult , Middle Aged , China , Coinfection/diagnosis , Coinfection/microbiology , Coinfection/virology , Respiratory Tract Infections/diagnosis , Respiratory Tract Infections/virology , Respiratory Tract Infections/microbiology
15.
Front Public Health ; 12: 1376540, 2024.
Article in English | MEDLINE | ID: mdl-38765487

ABSTRACT

Background: The psychological status of Chinese postgraduate students majoring in stomatology after the COVID-19 restrictions still remains unclear. The objective of this study is to evaluate the mental status through a cross-sectional survey and gather related theoretical evidence for psychological intervention on postgraduate students majoring in stomatology. Methods: An online survey was administered, and subjective well-being, anxiety, stress and depression symptoms were assessed using the 5-item World Health Organization Well-Being Index (WHO-5), item Generalized Anxiety Disorder Scale (GAD-7), 10-item Perceived Stress Scale (PSS-10), and Patient Health Questionnaire-9 (PHQ-9), respectively, wherein suicidal ideation and sleep-related problems were measured with PHQ-9 and Insomnia Severity Index (ISI). Results: A total of 208 participants who completed one questionnaire were considered as valid. It was found that female respondents generally exhibited significantly higher levels of PSS-10, PHQ-9, and GAD-7 scores and shorter physical activity hours than male students. Students from rural areas demonstrated significantly higher levels of PHQ-9, suicidal ideation, and less portion of good or fair family economic support. Additionally, individuals from only-child families reported increased levels of activity hours (1.78 ± 2.07, p = 0.045) and a higher portion (55.10%, p = 0.007) of having clear future plan as compared with multiple-child families. The risk factors for anxiety symptoms (GAD-7 score) were higher scores of PSS-10 (OR = 1.15, 95% CI = 1.09-1.22), PHQ-9 (OR = 1.35, 95% CI = 1.22-1.49), and ISI-7 (OR = 1.14, 95% CI = 1.06-1.23), while owning a clear graduation plan was the protective factor (OR = 0.55, 95% CI = 0.31-0.98). Moreover, the risk factors for depressive symptoms (PHQ-9) included PSS-10 (OR = 1.10, 95% CI = 1.04-1.16), GAD-7 (OR = 1.38, 95% CI = 1.25-1.52), suicidal ideation (OR = 5.66, 95% CI = 3.37-9.51), and ISI-7 (OR = 1.17, 95% CI = 1.09-1.25). Approximately 98.08% of Chinese postgraduates studying stomatology reported experiencing at least moderate stress after the COVID-19 restrictions. Conclusion: Within the limitations of this study, senior students were more inclined to stress, while anxiety symptoms were related to severer levels of stress, depression, and insomnia. Depressive symptoms were associated with higher levels of stress, anxiety, insomnia, suicidal ideation, and lower levels of self-reported well-being. Thus, psychological interventions for postgraduates should be timely and appropriately implemented by strengthening well-being, reasonably planning for the future, and good physique, thereby mitigating the psychological issues after COVID-19 restrictions.


Subject(s)
Anxiety , COVID-19 , Depression , Humans , Male , Female , Cross-Sectional Studies , COVID-19/epidemiology , COVID-19/psychology , China/epidemiology , Adult , Surveys and Questionnaires , Depression/epidemiology , Anxiety/epidemiology , Stress, Psychological , Mental Health , Suicidal Ideation , Young Adult , SARS-CoV-2 , Students/psychology , East Asian People
16.
bioRxiv ; 2024 Apr 27.
Article in English | MEDLINE | ID: mdl-38712273

ABSTRACT

Polyethylene terephthalate (PET) is one of the most widely produced man-made polymers and is a significant contributor to microplastics pollution. The environmental and human health impacts of microplastics pollution have motivated a concerted effort to develop microbe- and enzyme-based strategies to degrade PET and similar plastics. A PETase derived from the bacteria Ideonella sakaiensis was previously shown to enzymatically degrade PET, triggering multidisciplinary efforts to improve the robustness and activity of this and other PETases. However, because these enzymes only erode the surface of the insoluble PET substrate, it is difficult to measure standard kinetic parameters, such as kon, koff and kcat, complicating interpretation of the activity of mutants using traditional enzyme kinetics frameworks. To address this challenge, we developed a single-molecule microscopy assay that quantifies the landing rate and binding duration of quantum dot-labeled PETase enzymes interacting with a surface-immobilized PET film. Wild-type PETase binding durations were well fit by a biexponential with a fast population having a 2.7 s time constant, interpreted as active binding events, and a slow population interpreted as non-specific binding interactions that last tens of seconds. A previously described hyperactive mutant, S238F/W159H had both a faster on-rate and a slower off-rate than wild-type PETase, potentially explaining its enhanced activity. Because this single-molecule approach provides a more detailed mechanistic picture of PETase enzymatic activity than standard bulk assays, it should aid future efforts to engineer more robust and active PETases to combat global microplastics pollution.

17.
ISA Trans ; 149: 1-15, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38643036

ABSTRACT

This work presents a resilient distributed optimization algorithm based on the event-triggering mechanism for cyber-physical systems (CPSs) to optimize an average of convex cost functions corresponding to multiple agents under adversarial environments. Two attack scenarios, including the f-total (each agent is affected by at most f malicious agents in the whole network) and the f-local (each agent is affected by at most f malicious agents in its in-neighbor set) attacks are considered. Subsequently, the convergence conditions under these two attack scenarios are provided, respectively, both of which guarantee that the state values of benign agents converge to a bounded error range. The optimality conditions are also presented by theoretical analysis, which guarantee that the state values of benign agents converge to a safety interval constructed by local optimal values under certain graph conditions, despite the misbehavior of malicious agents. In addition, four numerical examples are presented to show the effectiveness and superiority of the event-triggering resilient distributed optimization (RDO-E) algorithm. Compared to existing resilient algorithms, the proposed method achieves resilient distributed optimization with higher accuracy and less demanding communication overheads. Finally, by applying the proposed method to the multi-microgrid system, a resilient economic dispatch problem (REDP) is successfully solved, which validates the practical viability of the RDO-E algorithm.

18.
Cell Rep Med ; 5(5): 101524, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38670096

ABSTRACT

The carbonic anhydrase 2 (Car2) gene encodes the primary isoenzyme responsible for aqueous humor (AH) production and plays a major role in the regulation of intraocular pressure (IOP). The CRISPR-Cas9 system, based on the ShH10 adenovirus-associated virus, can efficiently disrupt the Car2 gene in the ciliary body. With a single intravitreal injection, Car2 knockout can significantly and sustainably reduce IOP in both normal mice and glaucoma models by inhibiting AH production. Furthermore, it effectively delays and even halts glaucomatous damage induced by prolonged high IOP in a chronic ocular hypertension model, surpassing the efficacy of clinically available carbonic anhydrase inhibitors such as brinzolamide. The clinical application of CRISPR-Cas9 based disruption of Car2 is an attractive therapeutic strategy that could bring additional benefits to patients with glaucoma.


Subject(s)
CRISPR-Cas Systems , Carbonic Anhydrase II , Ciliary Body , Glaucoma , Intraocular Pressure , Animals , Glaucoma/genetics , Glaucoma/pathology , Glaucoma/metabolism , CRISPR-Cas Systems/genetics , Ciliary Body/metabolism , Ciliary Body/pathology , Carbonic Anhydrase II/genetics , Carbonic Anhydrase II/metabolism , Mice , Aqueous Humor/metabolism , Humans , Disease Models, Animal , Carbonic Anhydrase Inhibitors/pharmacology , Carbonic Anhydrase Inhibitors/therapeutic use , Gene Deletion , Mice, Inbred C57BL , Ocular Hypertension/genetics , Ocular Hypertension/pathology
20.
Sci Rep ; 14(1): 8670, 2024 04 15.
Article in English | MEDLINE | ID: mdl-38622371

ABSTRACT

Hypoxic pulmonary hypertension (HPH) is a pulmonary vascular disease primarily characterized by progressive pulmonary vascular remodeling in a hypoxic environment, posing a significant clinical challenge. Leveraging data from the Gene Expression Omnibus (GEO) and human autophagy-specific databases, osteopontin (OPN) emerged as a differentially expressed gene, upregulated in cardiovascular diseases such as pulmonary arterial hypertension (PAH). Despite this association, the precise mechanism by which OPN regulates autophagy in HPH remains unclear, prompting the focus of this study. Through biosignature analysis, we observed significant alterations in the PI3K-AKT signaling pathway in PAH-associated autophagy. Subsequently, we utilized an animal model of OPNfl/fl-TAGLN-Cre mice and PASMCs with OPN shRNA to validate these findings. Our results revealed right ventricular hypertrophy and elevated mean pulmonary arterial pressure (mPAP) in hypoxic pulmonary hypertension model mice. Notably, these effects were attenuated in conditionally deleted OPN-knockout mice or OPN-silenced hypoxic PASMCs. Furthermore, hypoxic PASMCs with OPN shRNA exhibited increased autophagy compared to those in hypoxia alone. Consistent findings from in vivo and in vitro experiments indicated that OPN inhibition during hypoxia reduced PI3K expression while increasing LC3B and Beclin1 expression. Similarly, PASMCs exposed to hypoxia and PI3K inhibitors had higher expression levels of LC3B and Beclin1 and suppressed AKT expression. Based on these findings, our study suggests that OPNfl/fl-TAGLN-Cre effectively alleviates HPH, potentially through OPN-mediated inhibition of autophagy, thereby promoting PASMCs proliferation via the PI3K-AKT signaling pathway. Consequently, OPN emerges as a novel therapeutic target for HPH.


Subject(s)
Hypertension, Pulmonary , Pulmonary Arterial Hypertension , Mice , Humans , Animals , Hypertension, Pulmonary/drug therapy , Osteopontin/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Beclin-1/genetics , Beclin-1/metabolism , Pulmonary Artery/metabolism , Hypoxia/complications , Hypoxia/genetics , Hypoxia/metabolism , Pulmonary Arterial Hypertension/metabolism , RNA, Small Interfering/metabolism , Autophagy/genetics , Cell Proliferation , Myocytes, Smooth Muscle/metabolism , Vascular Remodeling
SELECTION OF CITATIONS
SEARCH DETAIL
...