Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 578
Filter
1.
Ann Hematol ; 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38990296

ABSTRACT

Membranous nephropathy (MN) is a rare complication that can occur after allogeneic hematopoietic stem cell transplantation (allo-HSCT). MN patients may develop nephrotic syndrome or even kidney failure, which greatly affects their quality of life and prognosis. However, current knowledge regarding MN after allo-HSCT is limited. Thus, a multicenter nested case‒control study was conducted. Patients who had been diagnosed with MN after allo-HSCT were retrospectively identified at 8 HSCT centers. A total of 51 patients with MN after allo-HSCT were included. The median age of MN patients after allo-HSCT was 38 years, and the median duration from HSCT to MN was 18 months. The use of HLA-matched donors (P = 0.0102) and peripheral blood as the graft source (P = 0.0060) were identified as independent predisposing risk factors for the onset of MN after allo-HSCT. Compared to those in the control group, the incidence of extensive chronic graft-versus-host disease was greater in the MN patients (P = 0.0002). A total of 31 patients developed nephrotic syndrome. Patients receiving combination treatments of corticosteroids and immunosuppressants appeared to have better outcomes. In conclusion, MN is a rare but occasionally severe complication following HSCT and may require active treatment.

2.
World J Gastrointest Oncol ; 16(6): 2463-2475, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38994169

ABSTRACT

BACKGROUND: Hepatocellular carcinoma (HCC) is the third leading cause of cancer-related death worldwide. Serum biomarkers play an important role in the early diagnosis and prognosis of HCC. Because a certain percentage of HCC patients are negative for alpha-fetoprotein (AFP), the diagnosis of AFP-negative HCC is essential to improve the detection rate of HCC. AIM: To establish an effective model for diagnosing AFP-negative HCC based on serum tumour biomarkers. METHODS: A total of 180 HCC patients were enrolled in this study. The expression levels of GP73, des-γ-carboxyprothrombin (DCP), CK18-M65, and CK18-M30 were detected by a fully automated chemiluminescence analyser. The variables were selected by logistic regression analysis. Several models were constructed using stepwise backward logistic regression. The performance of the models was compared using the C statistic, integrated discrimination improvement, net reclassification improvement, and calibration curves. The clinical utility of the nomogram was assessed using decision curve analysis (DCA). RESULTS: The results showed that the expression levels of GP73, DCP, CK18-M65, and CK18-M30 were significantly greater in AFP-negative HCC patients than in healthy controls (P < 0.001). Multivariate logistic regression analysis revealed that GP73, DCP, and CK18-M65 were independent factors for diagnosing AFP-negative HCC. By comparing the diagnostic performance of multiple models, we included GP73 and CK18-M65 as the model variables, and the model had good discrimination ability (area under the curve = 0.946) and good goodness of fit. The DCA curves indicated the good clinical utility of the nomogram. CONCLUSION: Our study identified GP73 and CK18-M65 as serum biomarkers with certain application value in the diagnosis of AFP-negative HCC. The diagnostic nomogram based on CK18-M65 combined with GP73 demonstrated good performance and effectively identified high-risk groups of patients with HCC.

3.
Lancet Planet Health ; 8(7): e463-e475, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38969474

ABSTRACT

BACKGROUND: Nipah virus is a zoonotic paramyxovirus responsible for disease outbreaks with high fatality rates in south and southeast Asia. However, knowledge of the potential geographical extent and risk patterns of the virus is poor. We aimed to establish an integrated spatiotemporal and phylogenetic database of Nipah virus infections in humans and animals across south and southeast Asia. METHODS: In this geospatial modelling analysis, we developed an integrated database containing information on the distribution of Nipah virus infections in humans and animals from 1998 to 2021. We conducted phylodynamic analysis to examine the evolution and migration pathways of the virus and meta-analyses to estimate the adjusted case-fatality rate. We used two boosted regression tree models to identify the potential ecological drivers of Nipah virus occurrences in spillover events and endemic areas, and mapped potential risk areas for Nipah virus endemicity. FINDINGS: 749 people and eight bat species across nine countries were documented as being infected with Nipah virus. On the basis of 66 complete genomes of the virus, we identified two clades-the Bangladesh clade and the Malaysia clade-with the time of the most recent common ancestor estimated to be 1863. Adjusted case-fatality rates varied widely between countries and were higher for the Bangladesh clade than for the Malaysia clade. Multivariable meta-regression analysis revealed significant relationships between case-fatality rate estimates and viral clade (p=0·0021), source country (p=0·016), proportion of male patients (p=0·036), and travel time to health-care facilities (p=0·036). Temperature-related bioclimate variables and the probability of occurrence of Pteropus medius were important contributors to both the spillover and the endemic infection models. INTERPRETATION: The suitable niches for Nipah virus are more extensive than previously reported. Future surveillance efforts should focus on high-risk areas informed by updated projections. Specifically, intensifying zoonotic surveillance efforts, enhancing laboratory testing capacity, and implementing public health education in projected high-risk areas where no human cases have been reported to date will be crucial. Additionally, strengthening wildlife surveillance and investigating potential modes of transmission in regions with documented human cases is needed. FUNDING: The Key Research and Development Program of China.


Subject(s)
Henipavirus Infections , Nipah Virus , Nipah Virus/physiology , Henipavirus Infections/epidemiology , Henipavirus Infections/transmission , Humans , Animals , Chiroptera/virology , Asia, Southeastern/epidemiology , Phylogeny , Zoonoses/epidemiology , Zoonoses/virology
4.
Clin Transplant ; 38(7): e15396, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38967600

ABSTRACT

INTRODUCTION: Central nervous system leukemia (CNSL) remains a serious complication in patients with acute myeloid leukemia (AML) and an ambiguous prognostic factor for those receiving allo-geneic hematopoiesis stem cell transplantation (allo-HSCT). It is unknown whether using more sensitive tools, such as multiparameter flow cytometry (MFC), to detect blasts in the cerebrospinal fluid (CSF) would have an impact on outcome. METHODS: We retrospectively analyzed the clinical outcomes of 1472 AML patients with or without cytology or MFC positivity in the CSF before transplantation. Abnormal CSF (CSF+) was detected via conventional cytology and MFC in 44 patients at any time after diagnosis. A control group of 175 CSF-normal (CSF-) patients was generated via propensity score matching (PSM) analyses according to sex, age at transplant, and white blood cell count at diagnosis. RESULTS: Compared to those in the CSF-negative group, the conventional cytology positive and MFC+ groups had comparable 8-year nonrelapse mortality (NRM) (4%, 4%, and 6%, p = 0.82), higher cumulative incidence of relapse (CIR) (14%, 31%, and 32%, p = 0.007), lower leukemia-free survival (LFS) (79%, 63%, and 64%, p = 0.024), and overall survival (OS) (83%, 63%, and 68%, p = 0.021), with no significant differences between the conventional cytology positive and MFC+ groups. Furthermore, multivariate analysis confirmed that CSF involvement was an independent factor affecting OS and LFS. CONCLUSION: Our results indicate that pretransplant CSF abnormalities are adverse factors independently affecting OS and LFS after allotransplantation in AML patients.


Subject(s)
Flow Cytometry , Hematopoietic Stem Cell Transplantation , Leukemia, Myeloid, Acute , Transplantation, Homologous , Humans , Female , Male , Leukemia, Myeloid, Acute/therapy , Leukemia, Myeloid, Acute/cerebrospinal fluid , Leukemia, Myeloid, Acute/mortality , Retrospective Studies , Adult , Prognosis , Middle Aged , Follow-Up Studies , Adolescent , Hematopoietic Stem Cell Transplantation/adverse effects , Survival Rate , Young Adult , Graft vs Host Disease/etiology , Graft vs Host Disease/cerebrospinal fluid , Graft vs Host Disease/diagnosis , Graft vs Host Disease/mortality , Aged , Child , Cytology
5.
J Gynecol Oncol ; 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38991946

ABSTRACT

OBJECTIVE: To analyze the fluctuations of patient-reported outcomes (PROs) and their relationships with cytokines in the peripheral blood of patients undergoing chemotherapy for ovarian cancer (OC). METHODS: PROs burden was prospectively measured by the M.D. Anderson Symptom Inventory-Ovarian Cancer (MDASI-OC) at baseline before chemotherapy, on a daily basis during and post-chemotherapy days (PCD) 7, 14, and 20. Cytokines were collected at baseline, days prior to hospital discharge and PCD 20. Pearson correlation was used to explore the associations between PROs and cytokines levels in peripheral blood. RESULTS: The top 8 rated symptoms were compared between the neoadjuvant chemotherapy (NACT) group (n=20) and the postoperative adjuvant chemotherapy (PAC) group (n=7). Before chemotherapy, the mean scores of fatigue and lack of appetite in the NACT group were higher than those in the PAC group. After chemotherapy, pain, nausea, vomiting, disturbed sleep, lack of appetite, and constipation increased to peak during PCD 2-6; while, fatigue and numbness or tingling remained at high levels over PCD 2-13. By PCD 20, disturbed sleep and fatigue showed a significant increase in mean scores, particularly in the NACT group; while, other symptom scores decreased and returned to baseline levels. Additionally, the longitudinal fluctuations in pain, fatigue, and lack of appetite were positively associated with circulating levels of interleukin-6 and interferon gamma (p<0.05). CONCLUSION: MDASI-OC was feasible and adaptable for demonstrating the fluctuations of symptom burden throughout chemotherapy course. Moreover, symptoms changing along with cytokines levels could provide clues for exploring mechanism underlying biochemical etiology.

6.
Am J Hematol ; 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38980207

ABSTRACT

Patients with steroid-resistant or relapsed immune thrombocytopenia (ITP) suffer increased bleeding risk and impaired quality of life. Baricitinib, an oral Janus-associated kinases (JAK) inhibitor, could alleviate both innate and adaptive immune disorders without inducing thrombocytopenia in several autoimmune diseases. Accordingly, an open-label, single-arm, phase 2 trial (NCT05446831) was initiated to explore the safety and efficacy of baricitinib in ITP. Eligible patients were adults with primary ITP who were refractory to corticosteroids and at least one subsequent treatment, and had platelet counts below 30 × 109/L at enrolment. Participants received baricitinib 4 mg daily for 6 months. The primary endpoint was durable response at the 6-month follow-up. A total of 35 patients were enrolled. Durable response was achieved in 20 patients (57.1%, 95% confidence interval, 39.9 to 74.4), and initial response in 23 (65.7%) patients. For patients responding to baricitinib, the median time to response was 12 (IQR 6-20) days, and the median peak platelet count was 94 (IQR 72-128) × 109/L. Among the 27 patients undergoing extend observation, 12 (44.4%) remained responsive for a median duration of approximately 20 weeks after baricitinib discontinuation. Adverse events were reported in 11 (31.4%) patients, including infections in 6 (17.1%) patients during the treatment period. Treatment discontinuation due to an adverse event was reported in 2 (5.7%) patients. Evidence from this pilot study suggested that baricitinib might be a novel candidate for the armamentarium of ITP-modifying agents. Future studies are warranted to validate the safety, efficacy, and optimal dosing of baricitinib in patients with ITP.

7.
Aging Med (Milton) ; 7(3): 393-405, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38975310

ABSTRACT

Objective: Chronological age (CAge), biological age (BAge), and accelerated age (AAge) are all important for aging-related diseases. CAge is a known risk factor for benign prostatic hyperplasia (BPH); However, the evidence of association of BAge and AAge with BPH is limited. This study aimed to evaluate the association of CAge, Bage, and AAge with BPH in a large prospective cohort. Method: A total of 135,933 males without BPH at enrolment were extracted from the UK biobank. We calculated three BAge measures (Klemera-Doubal method, KDM; PhenoAge; homeostatic dysregulation, HD) based on 16 biomarkers. Additionally, we calculated KDM-BAge and PhenoAge-BAge measures based on the Levine method. The KDM-AAge and PhenoAge-AAge were assessed by the difference between CAge and BAge and were standardized (mean = 0 and standard deviation [SD] = 1). Cox proportional hazard models were applied to assess the associations of CAge, Bage, and AAge with incident BPH risk. Results: During a median follow-up of 13.150 years, 11,811 (8.690%) incident BPH were identified. Advanced CAge and BAge measures were associated with an increased risk of BPH, showing threshold effects at a later age (all P for nonlinearity <0.001). Nonlinear relationships between AAge measures and risk of BPH were also found for KDM-AAge (P = 0.041) and PhenoAge-AAge (P = 0.020). Compared to the balance comparison group (-1 SD < AAge < 1 SD), the accelerated aging group (AAge > 2 SD) had a significantly elevated BPH risk with hazard ratio (HR) of 1.115 (95% CI, 1.000-1.223) for KDM-AAge and 1.180 (95% CI, 1.068-1.303) for PhenoAge-AAge, respectively. For PhenoAge-AAge, subgroup analysis of the accelerated aging group showed an increased HR of 1.904 (95% CI, 1.374-2.639) in males with CAge <50 years and 1.233 (95% CI, 1.088-1.397) in those having testosterone levels <12 nmol/L. Moreover, AAge-associated risk of BPH was independent of and additive to genetic risk. Conclusions: Biological aging is an independent and modifiable risk factor for BPH. We suggest performing active health interventions to slow biological aging, which will help mitigate the progression of prostate aging and further reduce the burden of BPH.

8.
Article in English | MEDLINE | ID: mdl-38923247

ABSTRACT

Significant pharmacokinetic (PK) differences exist between different forms of valproic acid (VPA), such as syrup and sustained-release (SR) tablets. This study aimed to develop a population pharmacokinetic (PopPK) model for VPA in children with epilepsy and offer dose adjustment recommendation for switching dosage forms as needed. The study collected 1411 VPA steady-state trough concentrations (Ctrough) from 617 children with epilepsy. Using NONMEM software, a PopPK model was developed, employing a stepwise approach to identify possible variables such as demographic information and concomitant medications. The final model underwent internal and external evaluation via graphical and statistical methods. Moreover, Monte Carlo simulations were used to generate a dose tailoring strategy for typical patients weighting 20-50 kg. As a result, the PK characteristics of VPA were described using a one-compartment model with first-order absorption. The absorption rate constant (ka) was set at 2.64 and 0.46 h-1 for syrup and SR tablets. Body weight and sex were identified as significant factors affecting VPA's pharmacokinetics. The final PopPK model demonstrated acceptable prediction performance and stability during internal and external evaluation. For children taking syrup, a daily dose of 25 mg/kg resulted in the highest probability of achieving the desired target Ctrough, while a dose of 20 mg/kg/day was appropriate for those taking SR tablets. In conclusion, we established a PopPK model for VPA in children with epilepsy to tailor VPA dosage when switching between syrup and SR tablets, aiming to improve plasma VPA concentrations fluctuations.

9.
World J Gastroenterol ; 30(21): 2763-2776, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38899335

ABSTRACT

BACKGROUND: At present, liver transplantation (LT) is one of the best treatments for hepatocellular carcinoma (HCC). Accurately predicting the survival status after LT can significantly improve the survival rate after LT, and ensure the best way to make rational use of liver organs. AIM: To develop a model for predicting prognosis after LT in patients with HCC. METHODS: Clinical data and follow-up information of 160 patients with HCC who underwent LT were collected and evaluated. The expression levels of alpha-fetoprotein (AFP), des-gamma-carboxy prothrombin, Golgi protein 73, cytokeratin-18 epitopes M30 and M65 were measured using a fully automated chemiluminescence analyzer. The best cutoff value of biomarkers was determined using the Youden index. Cox regression analysis was used to identify the independent risk factors. A forest model was constructed using the random forest method. We evaluated the accuracy of the nomogram using the area under the curve, using the calibration curve to assess consistency. A decision curve analysis (DCA) was used to evaluate the clinical utility of the nomograms. RESULTS: The total tumor diameter (TTD), vascular invasion (VI), AFP, and cytokeratin-18 epitopes M30 (CK18-M30) were identified as important risk factors for outcome after LT. The nomogram had a higher predictive accuracy than the Milan, University of California, San Francisco, and Hangzhou criteria. The calibration curve analyses indicated a good fit. The survival and recurrence-free survival (RFS) of high-risk groups were significantly lower than those of low- and middle-risk groups (P < 0.001). The DCA shows that the model has better clinical practicability. CONCLUSION: The study developed a predictive nomogram based on TTD, VI, AFP, and CK18-M30 that could accurately predict overall survival and RFS after LT. It can screen for patients with better postoperative prognosis, and improve long-term survival for LT patients.


Subject(s)
Biomarkers, Tumor , Carcinoma, Hepatocellular , Liver Neoplasms , Liver Transplantation , Nomograms , alpha-Fetoproteins , Humans , Carcinoma, Hepatocellular/surgery , Carcinoma, Hepatocellular/mortality , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/blood , Liver Neoplasms/surgery , Liver Neoplasms/mortality , Liver Neoplasms/pathology , Liver Neoplasms/blood , Male , Liver Transplantation/adverse effects , Middle Aged , Female , Risk Factors , alpha-Fetoproteins/analysis , Biomarkers, Tumor/blood , Biomarkers, Tumor/analysis , Prognosis , Adult , Retrospective Studies , Aged , Treatment Outcome , Keratin-18/blood , Keratin-18/analysis , Decision Support Techniques
10.
Clin Transl Med ; 14(6): e1734, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38888967

ABSTRACT

BACKGROUND: Sporadic parathyroid adenoma (PA) is the most common cause of hyperparathyroidism, yet the mechanisms involved in its pathogenesis remain incompletely understood. METHODS: Surgically removed PA samples, along with normal parathyroid gland (PG) tissues that were incidentally dissected during total thyroidectomy, were analysed using single-cell RNA-sequencing with the 10× Genomics Chromium Droplet platform and Cell Ranger software. Gene set variation analysis was conducted to characterise hallmark pathway gene signatures, and single-cell regulatory network inference and clustering were utilised to analyse transcription factor regulons. Immunohistochemistry and immunofluorescence were performed to validate cellular components of PA tissues. siRNA knockdown and gene overexpression, alongside quantitative polymerase chain reaction, Western blotting and cell proliferation assays, were conducted for functional investigations. RESULTS: There was a pervasive increase in gene transcription in PA cells (PACs) compared with PG cells. This is associated with high expression of histone-lysine N-methyltransferase 2A (KMT2A). High KMT2A levels potentially contribute to promoting PAC proliferation through upregulation of the proto-oncogene CCND2, which is mediated by the transcription factors signal transducer and activator of transcription 3 (STAT3) and GATA binding protein 3 (GATA3). PA tissues are heavily infiltrated with myeloid cells, while fibroblasts, endothelial cells and macrophages in PA tissues are commonly enriched with proinflammatory gene signatures relative to their counterparts in PG tissues. CONCLUSIONS: We revealed the previously underappreciated involvement of the KMT2A‒STAT3/GATA3‒CCND2 axis and chronic inflammation in the pathogenesis of PA. These findings underscore the therapeutic promise of KMT2A inhibition and anti-inflammatory strategies, highlighting the need for future investigations to translate these molecular insights into practical applications. HIGHLIGHTS: Single-cell RNA-sequencing reveals a transcriptome catalogue comparing sporadic parathyroid adenomas (PAs) with normal parathyroid glands. PA cells show a pervasive increase in gene expression linked to KMT2A upregulation. KMT2A-mediated STAT3 and GATA3 upregulation is key to promoting PA cell proliferation via cyclin D2. PAs exhibit a proinflammatory microenvironment, suggesting a potential role of chronic inflammation in PA pathogenesis.


Subject(s)
Adenoma , Histone-Lysine N-Methyltransferase , Inflammation , Parathyroid Neoplasms , Humans , Parathyroid Neoplasms/genetics , Parathyroid Neoplasms/metabolism , Parathyroid Neoplasms/pathology , Adenoma/genetics , Adenoma/metabolism , Adenoma/pathology , Inflammation/genetics , Inflammation/metabolism , Histone-Lysine N-Methyltransferase/genetics , Histone-Lysine N-Methyltransferase/metabolism , Myeloid-Lymphoid Leukemia Protein/genetics , Myeloid-Lymphoid Leukemia Protein/metabolism , Proto-Oncogene Mas , Cell Proliferation/genetics
11.
Inflammation ; 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38822951

ABSTRACT

Diabetic kidney disease (DKD) is a common microvascular complication of diabetes, inflammation and fibrosis play an important role in its progression. Histone lysine crotonylation (Kcr) was first identified as a new type of post-translational modification in 2011. In recent years, prominent progress has been made in the study of sodium crotonate (NaCr) and histone Kcr in kidney diseases. However, the effects of NaCr and NaCr-induced Kcr on DKD remain unclear. In this study, db/db mice and high glucose-induced human tubular epithelial cells (HK-2) were used respectively, and exogenous NaCr and crotonoyl-coenzyme A (Cr-CoA) as intervention reagents, histone Kcr and DKD-related indicators were detected. The results confirmed that NaCr had an antidiabetic effect and decreased blood glucose and serum lipid levels and alleviated renal function and DKD-related inflammatory and fibrotic damage. NaCr also induced histone Kcr and histone H3K18 crotonylation (H3K18cr). However, NaCr and Cr-CoA-induced histone Kcr and protective effects were reversed by inhibiting the activity of Acyl-CoA synthetase short-chain family member 2 (ACSS2) or histone acyltransferase P300 in vitro. In summary, our data reveal that NaCr may mitigate DKD via an antidiabetic effect as well as through ACSS2 and P300-induced histone Kcr, suggesting that Kcr may be the potential molecular mechanism and prevention target of DKD.

13.
Cancer Lett ; 592: 216937, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38704134

ABSTRACT

Dysfunctional bone marrow (BM) endothelial progenitor cells (EPCs) with high levels of reactive oxygen species (ROS) are responsible for defective hematopoiesis in poor graft function (PGF) patients with acute leukemia or myelodysplastic neoplasms post-allotransplant. However, the underlying mechanism by which BM EPCs regulate their intracellular ROS levels and the capacity to support hematopoiesis have not been well clarified. Herein, we demonstrated decreased levels of peroxisome proliferator-activated receptor delta (PPARδ), a lipid-activated nuclear receptor, in BM EPCs of PGF patients compared with those with good graft function (GGF). In vitro assays further identified that PPARδ knockdown contributed to reduced and dysfunctional BM EPCs, characterized by the impaired ability to support hematopoiesis, which were restored by PPARδ overexpression. Moreover, GW501516, an agonist of PPARδ, repaired the damaged BM EPCs triggered by 5-fluorouracil (5FU) in vitro and in vivo. Clinically, activation of PPARδ by GW501516 benefited the damaged BM EPCs from PGF patients or acute leukemia patients in complete remission (CR) post-chemotherapy. Mechanistically, we found that increased expression of NADPH oxidases (NOXs), the main ROS-generating enzymes, may lead to elevated ROS level in BM EPCs, and insufficient PPARδ may trigger BM EPC damage via ROS/p53 pathway. Collectively, we found that defective PPARδ contributes to BM EPC dysfunction, whereas activation of PPARδ in BM EPCs improves their hematopoiesis-supporting ability after myelosuppressive therapy, which may provide a potential therapeutic target not only for patients with leukemia but also for those with other cancers.


Subject(s)
Endothelial Progenitor Cells , Hematopoiesis , PPAR delta , Reactive Oxygen Species , Adult , Animals , Female , Humans , Male , Mice , Middle Aged , Young Adult , Bone Marrow Cells/metabolism , Bone Marrow Cells/drug effects , Endothelial Progenitor Cells/metabolism , Endothelial Progenitor Cells/drug effects , Fluorouracil/pharmacology , Hematopoiesis/drug effects , Mice, Inbred C57BL , Myelodysplastic Syndromes/pathology , Myelodysplastic Syndromes/metabolism , Myelodysplastic Syndromes/drug therapy , NADPH Oxidases/metabolism , PPAR delta/metabolism , PPAR delta/genetics , Reactive Oxygen Species/metabolism , Thiazoles/pharmacology , Tumor Suppressor Protein p53/metabolism
14.
Acta Pharmacol Sin ; 2024 May 27.
Article in English | MEDLINE | ID: mdl-38802569

ABSTRACT

Graft-versus-host disease (GVHD), an immunological disorder that arises from donor T cell activation through recognition of host alloantigens, is the major limitation in the application of allogeneic hematopoietic stem cell transplantation (allo-HSCT). Traditional immunosuppressive agents can relieve GVHD, but they induce serious side effects. It is highly required to explore alternative therapeutic strategy. Human amniotic epithelial stem cells (hAESCs) were recently considered as an ideal source for cell therapy with special immune regulatory property. In this study, we evaluated the therapeutic role of hAESCs in the treatment of GVHD, based on our previous developed cGMP-grade hAESCs product. Humanized mouse model of acute GVHD (aGVHD) was established by injection of huPBMCs via the tail vein. For prevention or treatment of aGVHD, hAESCs were injected to the mice on day -1 or on day 7 post-PBMC infusion, respectively. We showed that hAESCs infusion significantly alleviated the disease phenotype, increased the survival rate of aGVHD mice, and ameliorated pathological injuries in aGVHD target organs. We demonstrated that hAESCs directly induced CD4+ T cell polarization, in which Th1 and Th17 subsets were downregulated, and Treg subset was elevated. Correspondingly, the levels of a series of pro-inflammatory cytokines were reduced while the levels of the anti-inflammatory cytokines were upregulated in the presence of hAESCs. We found that hAESCs regulated CD4+ subset polarization in a paracrine mode, in which TGFß and PGE2 were selectively secreted to mediate Treg elevation and Th1/Th17 inhibition, respectively. In addition, transplanted hAESCs preserved the graft-versus-leukemia (GVL) effect by inhibiting leukemia cell growth. More intriguingly, hAESCs infusion in HSCT patients displayed potential anti-GVHD effect with no safety concerns and confirmed the immunoregulatory mechanisms in the preclinical study. We conclude that hAESCs infusion is a promising therapeutic strategy for post-HSCT GVHD without compromising the GVL effect. The clinical trial was registered at www.clinicaltrials.gov as #NCT03764228.

15.
J Chem Inf Model ; 64(10): 4348-4358, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38709146

ABSTRACT

Developing new pharmaceuticals is a costly and time-consuming endeavor fraught with significant safety risks. A critical aspect of drug research and disease therapy is discerning the existence of interactions between drugs and proteins. The evolution of deep learning (DL) in computer science has been remarkably aided in this regard in recent years. Yet, two challenges remain: (i) balancing the extraction of profound, local cohesive characteristics while warding off gradient disappearance and (ii) globally representing and understanding the interactions between the drug and target local attributes, which is vital for delivering molecular level insights indispensable to drug development. In response to these challenges, we propose a DL network structure, MolLoG, primarily comprising two modules: local feature encoders (LFE) and global interactive learning (GIL). Within the LFE module, graph convolution networks and leap blocks capture the local features of drug and protein molecules, respectively. The GIL module enables the efficient amalgamation of feature information, facilitating the global learning of feature structural semantics and procuring multihead attention weights for abstract features stemming from two modalities, providing biologically pertinent explanations for black-box results. Finally, predictive outcomes are achieved by decoding the unified representation via a multilayer perceptron. Our experimental analysis reveals that MolLoG outperforms several cutting-edge baselines across four data sets, delivering superior overall performance and providing satisfactory results when elucidating various facets of drug-target interaction predictions.


Subject(s)
Deep Learning , Proteins , Proteins/metabolism , Proteins/chemistry , Pharmaceutical Preparations/chemistry , Pharmaceutical Preparations/metabolism , Drug Discovery/methods , Models, Molecular
16.
Heliyon ; 10(10): e31265, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38803876

ABSTRACT

Background: Tubulointerstitial fibrosis (TIF) is a critical pathological feature of chronic renal failure (CRF), with oxidative stress (OS) and hypoxic responses in renal proximal tubular epithelial cells playing pivotal roles in disease progression. This study explores the effects of Modified Zhenwu Tang (MZWT) on these processes, aiming to uncover its potential mechanisms in slowing CRF progression. Methods: We used adenine (Ade) to induce CRF in rats, which were then treated with benazepril hydrochloride (Lotensin) and MZWT for 8 weeks. Assessments included liver and renal function, electrolytes, blood lipids, renal tissue pathology, OS levels, the hypoxia-inducible factor (HIF) pathway, inflammatory markers, and other relevant indicators. In vitro, human renal cortical proximal tubular epithelial cells were subjected to hypoxia and lipopolysaccharide for 72 h, with concurrent treatment using MZWT, FM19G11, and N-acetyl-l-cysteine. Measurements taken included reactive oxygen species (ROS), HIF pathway activity, inflammatory markers, and other relevant indicators. Results: Ade treatment induced significant disruptions in renal function, blood lipids, electrolytes, and tubulointerstitial architecture, alongside heightened OS, HIF pathway activation, and inflammatory responses in rats. In vivo, MZWT effectively ameliorated proteinuria, renal dysfunction, lipid and electrolyte imbalances, and renal tissue damage; it also suppressed OS, HIF pathway activation, epithelial-mesenchymal transition (EMT) in proximal tubular epithelial cells, and reduced the production of inflammatory cytokines and collagen fibers. In vitro findings demonstrated that MZWT decreased apoptosis, reduced ROS production, curbed OS, HIF pathway activation, and EMT in proximal tubular epithelial cells, and diminished the output of inflammatory cytokines and collagen. Conclusion: OS and hypoxic responses significantly contribute to TIF development. MZWT mitigates these responses in renal proximal tubular epithelial cells, thereby delaying the progression of CRF.

17.
Article in English | MEDLINE | ID: mdl-38749100

ABSTRACT

Cyclosporine A (CsA) is a widely used immunosuppressive drug with a narrow therapeutic index and large individual differences. Its therapeutic and toxic effects are closely related to blood drug concentrations, requiring routine therapeutic drug monitoring (TDM). The current main methods for TDM of CsA are enzyme multiplied immunoassay technique (EMIT) and liquid chromatography-tandem mass spectrometry (LC-MS/MS). However, few study on the method comparison of the EMIT and LC-MS/MS for the measurement of whole blood CsA concentration in children has been reported. In this study, we developed a simple and sensitive LC-MS/MS assay for the determination of CsA, and 657 cases of CsA concentrations were determined from 197 pediatric patients by a routine EMIT assay and by the validated in-house LC-MS/MS method on the same batch of samples, aimed to address the aforementioned concern. Consistency between the two assays was evaluated using linear regression and Bland-Altman analysis. The linear range of LC-MS/MS was 0.500-2000 ng/mL and that of the EMIT was 40-500 ng/mL, respectively. Overall, the correlation between the two methods was significant (r-value ranging from 0.8842 to 0.9441). Unsatisfactory consistency was observed in the concentrations < 40 ng/mL (r = 0.7325) and 200-500 ng/mL (r = 0.6851). Bland-Altman plot showed a mean bias of -18.0 % (±1.96 SD, -73.8 to 37.8 %) between EMIT and LC-MS/MS. For Passing-Bablok regression between EMIT and LC-MS/MS did not differ significantly (p > 0.05). In conclusion, the two methods were closely correlated, but the CsA concentration by LC-MS/MS assay was slightly higher than that by EMIT method. Switching from the EMIT assay to the LC-MS/MS method was acceptable, and the LC-MS/MS method will receive broader application in clinical settings due to its better analytical capabilities, but the results need to be further verified in different laboratories.


Subject(s)
Cyclosporine , Drug Monitoring , Tandem Mass Spectrometry , Humans , Cyclosporine/blood , Tandem Mass Spectrometry/methods , Linear Models , Chromatography, Liquid/methods , Child , Drug Monitoring/methods , Reproducibility of Results , Enzyme Multiplied Immunoassay Technique , Child, Preschool , Male , Limit of Detection , Infant , Immunosuppressive Agents/blood , Immunosuppressive Agents/pharmacokinetics , Female , Adolescent , Liquid Chromatography-Mass Spectrometry
18.
World J Stem Cells ; 16(5): 525-537, 2024 May 26.
Article in English | MEDLINE | ID: mdl-38817335

ABSTRACT

BACKGROUND: Acute kidney injury (AKI) is a common clinical syndrome with high morbidity and mortality rates. The use of pluripotent stem cells holds great promise for the treatment of AKI. Urine-derived stem cells (USCs) are a novel and versatile cell source in cell-based therapy and regenerative medicine that provide advantages of a noninvasive, simple, and low-cost approach and are induced with high multidifferentiation potential. Whether these cells could serve as a potential stem cell source for the treatment of AKI has not been determined. AIM: To investigate whether USCs can serve as a potential stem cell source to improve renal function and histological structure after experimental AKI. METHODS: Stem cell markers with multidifferentiation potential were isolated from human amniotic fluid. AKI severe combined immune deficiency (SCID) mice models were induced by means of an intramuscular injection with glycerol. USCs isolated from human-voided urine were administered via tail veins. The functional changes in the kidney were assessed by the levels of blood urea nitrogen and serum creatinine. The histologic changes were evaluated by hematoxylin and eosin staining and transferase dUTP nick-end labeling staining. Meanwhile, we compared the regenerative potential of USCs with bone marrow-derived mesenchymal stem cells (MSCs). RESULTS: Treatment with USCs significantly alleviated histological destruction and functional decline. The renal function was rapidly restored after intravenous injection of 5 × 105 human USCs into SCID mice with glycerol-induced AKI compared with injection of saline. Results from secretion assays conducted in vitro demonstrated that both stem cell varieties released a wide array of cytokines and growth factors. This suggests that a mixture of various mediators closely interacts with their biochemical functions. Two types of stem cells showed enhanced tubular cell proliferation and decreased tubular cell apoptosis, although USC treatment was not more effective than MSC treatment. We found that USC therapy significantly improved renal function and histological damage, inhibited inflammation and apoptosis processes in the kidney, and promoted tubular epithelial proliferation. CONCLUSION: Our study demonstrated the potential of USCs for the treatment of AKI, representing a new clinical therapeutic strategy.

19.
Sci Adv ; 10(22): eadk9928, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38820158

ABSTRACT

The proton-electron coupling effect induces rich spectrums of electronic states in correlated oxides, opening tempting opportunities for exploring novel devices with multifunctions. Here, via modest Pt-aided hydrogen spillover at room temperature, amounts of protons are introduced into SmNiO3-based devices. In situ structural characterizations together with first-principles calculation reveal that the local Mott transition is reversibly driven by migration and redistribution of the predoped protons. The accompanying giant resistance change results in excellent memristive behaviors under ultralow electric fields. Hierarchical tree-like memory states, an instinct displayed in bio-synapses, are further realized in the devices by spatially varying the proton concentration with electric pulses, showing great promise in artificial neural networks for solving intricate problems. Our research demonstrates the direct and effective control of proton evolution using extremely low electric field, offering an alternative pathway for modifying the functionalities of correlated oxides and constructing low-power consumption intelligent devices and neural network circuits.

20.
Saudi J Gastroenterol ; 30(3): 173-180, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38629327

ABSTRACT

BACKGROUND: Older patients with constipation are at higher risk for inadequate bowel preparation, but there are currently no targeted strategies. This study aims to develop an abdominal vibration combined with walking exercise (AVCWE) program and assess its feasibility among older patients with constipation. METHODS: Phase I: Using the Delphi technique, eight experts across three professional fields were consulted to develop the AVCWE program. The experts evaluated and provided recommendations on demonstration videos and detailed descriptions of the preliminary protocol. Phase II: A single-arm feasibility study of the AVCWE program was conducted on 30 older patients with constipation undergoing colonoscopy at a tertiary hospital in China. A 10-point exercise program evaluation form and several open-ended questions were used to gather feedback from participants regarding the program. In both phases, content analysis was used to critically analyze and summarize qualitative suggestions for protocol modifications. RESULTS: Based on feedback from the expert panel, the AVCWE program developed in Phase I included two procedures during laxative ingestion: at least 5,500 steps of walking exercise and two cycles of moderate-intensity abdominal vibration (each cycle consisted of 10 min of vibration and 10 min of rest). The feasibility study in Phase II showed high positive patient feedback scores for the program, ranging from 9.07 ± 0.74 to 9.73 ± 0.52. CONCLUSION: The AVCWE program was developed by eight multidisciplinary experts and was well accepted by 30 older patients with constipation. Study participants believed that this program was simple, safe, appropriate, and helpful for their bowel preparation. The findings of this study may provide valuable information for optimizing bowel preparation in older patients with constipation.


Subject(s)
Constipation , Exercise Therapy , Feasibility Studies , Vibration , Walking , Humans , Constipation/therapy , Constipation/physiopathology , Male , Female , Walking/physiology , Aged , Exercise Therapy/methods , Vibration/therapeutic use , Colonoscopy/methods , Abdomen , Middle Aged , Delphi Technique , China/epidemiology , Aged, 80 and over , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL
...