Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 22(20)2022 Oct 13.
Article in English | MEDLINE | ID: mdl-36298106

ABSTRACT

The electrical sensing elements used in the traditional XBT (Expendable Bathythermograph) have problems such as low sensitivity and slow response time, and it is difficult to overcome the complex marine environment using the time-depth formula. In this paper, an ocean temperature depth sensor based on brass diaphragm and liquid filling is designed. The stress response time of FBGs with different lengths and the heat transfer time of different liquid materials are compared, and it is found that a fast response of 51 ms can be obtained by using GaInSn liquid for temperature sensing. The center deflection changes of brass diaphragms with different radii are analyzed, and the brass diaphragms with radius and thickness of 10 mm and 1 mm are selected, which still have good elastic properties under the pressure of 5 MPa. The influence of the inner metal shell section radius on the temperature and depth sensitivity is analyzed. When the final section radius is 3 mm, the temperature sensitivity of the sensor is 1.065 nm/°C, the pressure sensitivity is 1.245 nm/MPa, and the response time of temperature and depth is relatively close. Compared with the traditional temperature and depth sensors using empirical formulas for calculation, the data accuracy is improved, and a wide range of sensitivity can be tuned by adjusting the size of the internal metal shell, which can meet the needs of ocean temperature and depth data detection with high sensitivity and fast response time.

2.
Article in English | MEDLINE | ID: mdl-32655188

ABSTRACT

The potential importance of longwave (LW) cloud scattering has been recognized but the actual estimate of this effect on thermal radiation varies greatly among different studies. General circulation models (GCMs) generally neglect or simplify the multiple scattering in the LW. In this study, we use a rigorous radiative transfer algorithm to explicitly consider LW multiple-scattering and apply the GCM to quantify the impact of cloud LW scattering on thermal radiation fluxes. Our study shows that the cloud scattering effect on downward thermal radiation at the surface is concentrated in the infrared atmospheric window spectrum (800-1250 cm-1). The scattering effect on the outgoing longwave radiation (OLR) is also present in the window region over low clouds but it is mainly in the far-infrared spectrum (300-600 cm-1) over high clouds. For clouds with small to moderate optical depth (τ < 10), the scattering effect on thermal fluxes shows large variation with the cloud τ and has a maximum at an optical depth of ~3. For opaque clouds, the scattering effect approaches an asymptote and is smaller and less important. The 2-stream radiative transfer scheme could have an error over 10% with an RMS error around 3.5%-4.0% in the calculated LW flux. This algorithm error of the 2-stream approximation could readily exceed the no-scattering error in the LW, and thus it is worthless to include the time-consuming computation of multiple scattering in a 2-stream radiative transfer scheme. However, the calculation error rapidly decreases as stream number increases and the RMS error in LW flux using the 4-stream scheme is under 0.3%, an accuracy sufficient for most climate studies. We implement the 4-stream discrete-ordinate algorithm in the GISS GCM and run the GCM for 20 years with and without the LW scattering effect, respectively. When cloud LW scattering is included, we find that the global annual mean OLR is reduced by 2.7 W/m2, and the downward surface flux and the net atmospheric absorption are increased by 1.6 W/m2 and 1.8 W/m2, respectively. Using one year of ISCCP clouds and running the standalone radiative transfer offline, the global annual mean non-scattering errors in OLR, surface LW downward flux and net atmospheric absorption are 3.6W/m2, -1.1 W/m2, and -2.5 W/m2, respectively. The global scattering impact of 2.7 W/m2 on the OLR is small when compared to the typical global OLR value of 240W/m2, but it is significant when compared to cloud LW radiative forcing (30W/m2) and net cloud forcing (-14W/m2). Overall, the effect of neglecting scattering on the thermal fluxes is comparable to the reported clear sky radiative effect of doubling CO2.

SELECTION OF CITATIONS
SEARCH DETAIL
...