Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Life (Basel) ; 13(3)2023 Mar 12.
Article in English | MEDLINE | ID: mdl-36983919

ABSTRACT

Cordyceps militaris is a famous traditional edible and medicinal fungus in Asia, and its fruiting body has rich medicinal value. The molecular mechanism of fruiting body development is still not well understood in C. militaris. In this study, phylogenetically analysis and protein domains prediction of the 14 putative chitinases were performed. The transcription level and enzyme activity of chitinase were significant increased during fruiting body development of C. militaris. Then, two chitinase genes (Chi1 and Chi4) were selected to construct gene silencing strain by RNA interference. When Chi1 and Chi4 genes were knockdown, the differentiation of the primordium was blocked, and the number of fruiting body was significantly decreased approximately by 50% compared to wild-type (WT) strain. The length of the single mature fruiting body was shortened by 27% and 38% in Chi1- and Chi4-silenced strains, respectively. In addition, the chitin content and cell wall thickness were significantly increased in Chi1- and Chi4-silenced strains. These results provide new insights into the biological functions of chitinase in fruiting body development of C. militaris.

2.
Nanoscale ; 10(12): 5532-5538, 2018 Mar 28.
Article in English | MEDLINE | ID: mdl-29513333

ABSTRACT

In this paper, DNA containing six cytosines as the formation site for silver nanoclusters (Ag NCs) was adopted as a template for preparing fluorescent DNA-Ag NCs. For the first time, it was found that the fluorescence of DNA-Ag NCs could be quenched after hybridization with their complementary sequence. On the basis of this new phenomenon, we designed a sequence C1 that was completely complementary to human immunodeficiency virus (HIV) DNA, and probe DNA which was partially complementary to C1 for the synthesis of DNA-Ag NCs. The fluorescence of DNA-Ag NCs was quenched after hybridization with C1 and the DNA-Ag NCs/C1 composite was formed, while C1 could be dissociated away from the DNA-Ag NCs by HIV DNA through a strand exchange reaction due to the stronger affinity between HIV DNA and C1, which could switch on the quenched Ag NCs, thus a new "off-on" fluorescence method for HIV DNA detection was developed. In the experiment, the Ag NCs formation site of DNA, the number of base pairs, and the pH and salt concentration of binding buffer were optimized. Under the optimum conditions, the limit of detection for HIV DNA was obtained to be 3.18 nM (3σ/N, n = 7) with the linear range of 15-150 nM for the 150 nM DNA-Ag NCs/C1 probe. Besides, the probe showed excellent specificity to HIV DNA, and even distinguished one nucleotide mismatched HIV DNA.


Subject(s)
DNA Probes , DNA, Viral/analysis , HIV Infections/diagnosis , Metal Nanoparticles , Silver , Fluorescent Dyes , HIV/genetics , Humans , Spectrometry, Fluorescence
SELECTION OF CITATIONS
SEARCH DETAIL
...