Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 174
Filter
1.
Adv Med Sci ; 69(1): 167-175, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38521458

ABSTRACT

PURPOSE: Psoriasis is a skin disease characterized by excessive proliferation, inflammation and oxidative stress in keratinocytes. The present study aimed to investigate the therapeutic effects of Dendrobium officinale polysaccharide (DOP) on keratinocyte psoriasis-like models. METHODS: The HaCaT keratinocyte inflammation models were induced by interleukin (IL)-22 or lipopolysaccharide (LPS), respectively, and oxidative stress damage within cells was elicited by H2O2 and treated using DOP. CCK-8 and EdU were carried out to detect cell proliferation. ELISA, qRT-PCR, and Western blot were conducted to measure the expression of pro-inflammatory cytokines IL17A, IL-23, IL1ß, tumor necrosis factor alpha (TNF-α), and IL-6. Reactive oxygen species (ROS) level in keratinocytes was detected by flow cytometry. Cell proliferation-associated proteins (PCNA, Ki67, Cyclin D1) and pathway proteins (p-AKT and AKT), and oxidative stress marker proteins (Nrf-2, CAT, SOD1) were detected by Western blot. RESULT: DOP did not affect the proliferation of normal keratinocytes, but DOP was able to inhibit the proliferative activity of IL-22-induced overproliferating keratinocytes and suppress the expression of proliferation-related factors PCNA, Ki67, and Cyclin D1 as well as the proliferation pathway p-AKT. In addition, DOP treatment was able to inhibit IL-22 and LPS-induced inflammation and H2O2-induced oxidative stress, including the expression of IL17A, IL-23, IL1ß, TNF-α, IL-6, and IL1ß, as well as the expression levels of intracellular ROS levels and cellular oxidative stress-related indicators SOD, MDA, CAT, Nrf-2 and SOD1. CONCLUSION: DOP inhibits keratinocyte hyperproliferation, inflammation and oxidative stress to improve the keratinocyte psoriasis-like state.


Subject(s)
Cell Proliferation , Dendrobium , Inflammation , Keratinocytes , Oxidative Stress , Polysaccharides , Psoriasis , Oxidative Stress/drug effects , Dendrobium/chemistry , Humans , Keratinocytes/drug effects , Keratinocytes/metabolism , Cell Proliferation/drug effects , Polysaccharides/pharmacology , Inflammation/drug therapy , Inflammation/pathology , Inflammation/metabolism , Psoriasis/drug therapy , Psoriasis/pathology , Psoriasis/metabolism , Reactive Oxygen Species/metabolism , Cytokines/metabolism
2.
Cereb Cortex ; 34(3)2024 03 01.
Article in English | MEDLINE | ID: mdl-38517172

ABSTRACT

The fetal period is a critical stage in brain development, and understanding the characteristics of the fetal brain is crucial. Although some studies have explored aspects of fetal brain functional networks, few have specifically focused on sex differences in brain network characteristics. We adopted the graph theory method to calculate brain network functional connectivity and topology properties (including global and nodal properties), and further compared the differences in these parameters between male and female fetuses. We found that male fetuses showed an increased clustering coefficient and local efficiency than female fetuses, but no significant group differences concerning other graph parameters and the functional connectivity matrix. Our study suggests the existence of sex-related distinctions in the topological properties of the brain network at the fetal stage of development and demonstrates an increase in brain network separation in male fetuses compared with female fetuses.


Subject(s)
Magnetic Resonance Imaging , Sex Characteristics , Male , Humans , Female , Magnetic Resonance Imaging/methods , Brain/diagnostic imaging , Brain Mapping , Cluster Analysis
3.
Eur Spine J ; 33(3): 1223-1229, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38231389

ABSTRACT

PURPOSE: To investigate the clinical application value of the non-shared incentive diffusion imaging technique (ZOOM-DWI) diagnoses of cervical spondylotic myelopathy (CSM). METHODS: 49 CSM patients who presented from January 2022 to December 2022 were selected as the patient group, and 50 healthy volunteers are recruited as the control group. All subjects underwent conventional MRI and ZOOM-DWI of the cervical spine and neurologic mJOA scores in patients with CSM. The spinal ADC values of segments C2-3, C4-5, C5-6, and C6-7 are measured and analyzed in all subjects, with C5-6 being the most severe level of spinal canal compression in the patient group. In addition, the study also analyzes and compares the relationship between the C5-6 ADC value and mJOA score in the patient group. RESULTS: The mean ADC shows no significantly different levels in the control group. Among the ADC values at each measurement level in the patient group, except for C4-5 and C6-7 segments are not statistically significant, the remaining pair-wise comparisons all show statistically significant differences (F = 24.368, p < 0.001). And these individuals have the highest ADC value at C5-6. The C5-6 ADC value in the patient group is significantly higher compared with the ADC value in the control group (t = 9.414, p < 0.001), with statistical significance. The ADC value at the patient stenosis shows a significant negative correlation with the mJOA score (r = -0.493, p < 0.001). CONCLUSION: Cervical ZOOM-DWI can be applied to diagnose CSM, and spinal ADC value can use as reliable imaging data for diagnosing cervical myelopathy.


Subject(s)
Spinal Cord Diseases , Spondylosis , Humans , Diffusion Tensor Imaging/methods , Spondylosis/diagnostic imaging , Spinal Cord Diseases/diagnostic imaging , Cervical Vertebrae/diagnostic imaging
4.
Skin Res Technol ; 30(1): e13543, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38186063

ABSTRACT

BACKGROUND: Rosacea, a common chronic inflammatory skin disease worldwide, is currently incurable with complex pathogenesis. Dendrobium polysaccharide (DOP) may exert therapeutic effects on rosacea via acting on the NF-κB-related inflammatory and oxidative processes. MATERIALS AND METHODS: In this study, an LL-37-induced rosacea-like mouse model was established. HE staining was used to assess the skin lesions, erythema severity scores, pathological symptoms, and inflammatory cell numbers of mice in each group. The inflammation level was quantitatively analyzed using enzyme-linked immunosorbent assay (ELISA) and reverse transcription-quantitative real-time polymerase chain reaction (RT-qPCR). The expression levels of TLR4 and p-NF-κB were finally detected. RESULTS: DOP improved skin pathological symptoms of rosacea mice. DOP also alleviated the inflammation of rosacea mice. Moreover, the TLR4/NF-κB pathway was observed to be inhibited in the skin of mice after DOP application. These findings evidenced the anti-inflammatory effects of DOP on the LL-37-induced rosacea mouse model. DOP could inhibit NF-κB activation, suppress neutrophil infiltration, and reduce pro-inflammatory cytokines production, which may be the reason for DOP protecting against rosacea. CONCLUSION: This study may propose an active candidate with great potential for rosacea drug development and lay a solid experimental foundation for promoting DOP application in rosacea therapy.


Subject(s)
Dendrobium , Rosacea , Animals , Mice , NF-kappa B , Toll-Like Receptor 4 , Rosacea/chemically induced , Rosacea/drug therapy , Disease Models, Animal , Inflammation , Polysaccharides/pharmacology , Polysaccharides/therapeutic use
5.
J Phys Chem A ; 128(2): 431-438, 2024 Jan 18.
Article in English | MEDLINE | ID: mdl-38190616

ABSTRACT

Octupolar molecules possessing a strong two-photon response are vital for numerous advanced applications. However, accurately predicting their two-photon absorption (TPA) spectra requires high-precision quantum chemical calculations, which are computationally expensive due to repeated simulations of molecular excited-state properties. To address this challenge, we introduce a deep learning approach capable of rapidly and accurately forecasting TPA spectra for octupolar molecules. By leveraging the geometric structure as an initial descriptor, we employ a graph neural network to predict the maximum two-photon transition wavelength and cross-section. Our model demonstrates a mean absolute percentage error of less than 4% compared to time-dependent density-functional theory calculations, effectively reproducing experimental observations. Notably, this deep learning technique is nearly 100 000 times faster than comparable quantum calculations, making it an efficient and cost-effective tool for simulating TPA properties of octupolar molecules. Furthermore, this method holds great promise for the high-throughput screening of exceptional TPA materials.

6.
JACS Au ; 3(11): 3127-3140, 2023 Nov 27.
Article in English | MEDLINE | ID: mdl-38034977

ABSTRACT

Given the rapid recombination of photogenerated charge carriers and photocorrosion, transition metal sulfide photocatalysts usually suffer from modest photocatalytic performance. Herein, S-vacancy-rich ZnIn2S4 (VS-ZIS) nanosheets are integrated on 3D bicontinuous nitrogen-doped nanoporous graphene (N-npG), forming 3D heterostructures with well-fitted geometric configuration (VS-ZIS/N-npG) for highly efficient photocatalytic hydrogen production. The VS-ZIS/N-npG presents ultrafast interfacial photogenerated electrons captured by the S vacancies in VS-ZIS and holes neutralization behaviors by the extra free electrons in N-npG during photocatalysis, which are demonstrated by in situ XPS, femtosecond transient absorption (fs-TA) spectroscopy, and transient-state surface photovoltage (TS-SPV) spectra. The simulated interfacial charge rearrangement behaviors from DFT calculations also verify the separation tendency of photogenerated charge carriers. Thus, the optimized VS-ZIS/N-npG 3D hierarchical heterojunction with 1.0 wt % N-npG exhibits a comparably high hydrogen generation rate of 4222.4 µmol g-1 h-1, which is 5.6-fold higher than the bare VS-ZIS and 12.7-fold higher than the ZIS without S vacancies. This work sheds light on the rational design of photogenerated carrier transfer paths to facilitate charge separation and provides further hints for the design of hierarchical heterostructure photocatalysts.

7.
J Am Soc Nephrol ; 34(10): 1647-1671, 2023 10 01.
Article in English | MEDLINE | ID: mdl-37725437

ABSTRACT

SIGNIFICANCE STATEMENT: Hypoxia drives kidney damage and progression of CKD. Although erythrocytes respond rapidly to hypoxia, their role and the specific molecules sensing and responding to hypoxia in CKD remain unclear. In this study, we demonstrated in a mouse model that erythrocyte ENT1-AMPD3 is a master energy regulator of the intracellular purinergic hypoxic compensatory response that promotes rapid energy supply from extracellular adenosine, eAMPK-dependent metabolic reprogramming, and O 2 delivery, which combat renal hypoxia and progression of CKD. ENT1-AMPD3-AMPK-BPGM comprise a group of circulating erythroid-specific biomarkers, providing early diagnostic and novel therapeutic targets for CKD. BACKGROUND: Hypoxia drives kidney damage and progression of CKD. Although erythrocytes respond rapidly to hypoxia, their role and the specific molecules sensing and responding to hypoxia in CKD remain unclear. METHODS: Mice with an erythrocyte-specific deficiency in equilibrative nucleoside transporter 1 ( eEnt1-/- ) and a global deficiency in AMP deaminase 3 ( Ampd3-/- ) were generated to define their function in two independent CKD models, including angiotensin II (Ang II) infusion and unilateral ureteral obstruction (UUO). Unbiased metabolomics, isotopic adenosine flux, and various biochemical and cell culture analyses coupled with genetic studies were performed. Translational studies in patients with CKD and cultured human erythrocytes examined the role of ENT1 and AMPD3 in erythrocyte function and metabolism. RESULTS: eEnt1-/- mice display severe renal hypoxia, kidney damage, and fibrosis in both CKD models. The loss of eENT1-mediated adenosine uptake reduces intracellular AMP and thus abolishes the activation of AMPK α and bisphosphoglycerate mutase (BPGM). This results in reduced 2,3-bisphosphoglycerate and glutathione, leading to overwhelming oxidative stress in eEnt1-/- mice. Excess reactive oxygen species (ROS) activates AMPD3, resulting in metabolic reprogramming and reduced O 2 delivery, leading to severe renal hypoxia in eEnt1-/- mice. By contrast, genetic ablation of AMPD3 preserves the erythrocyte adenine nucleotide pool, inducing AMPK-BPGM activation, O 2 delivery, and antioxidative stress capacity, which protect against Ang II-induced renal hypoxia, damage, and CKD progression. Translational studies recapitulated the findings in mice. CONCLUSION: eENT1-AMPD3, two highly enriched erythrocyte purinergic components that sense hypoxia, promote eAMPK-BPGM-dependent metabolic reprogramming, O 2 delivery, energy supply, and antioxidative stress capacity, which mitigates renal hypoxia and CKD progression.


Subject(s)
AMP Deaminase , Renal Insufficiency, Chronic , Humans , Mice , Animals , AMP-Activated Protein Kinases/metabolism , Hypoxia/metabolism , Adenosine/metabolism , Erythrocytes/metabolism , Renal Insufficiency, Chronic/metabolism , AMP Deaminase/genetics , AMP Deaminase/metabolism
8.
BMC Med Imaging ; 23(1): 112, 2023 08 24.
Article in English | MEDLINE | ID: mdl-37620769

ABSTRACT

BACKGROUND: On the basis of visual-dependent reading method, radiological recognition and assessment of neonatal hyperbilirubinemia (NH) or acute bilirubin encephalopathy (ABE) on conventional magnetic resonance imaging (MRI) sequences are challenging. Prior studies had shown that radiomics was possible to characterize ABE-induced intensity and morphological changes on MRI sequences, and it has emerged as a desirable and promising future in quantitative and objective MRI data extraction. To investigate the utility of radiomics based on T1-weighted sequences for identifying neonatal ABE in patients with hyperbilirubinemia and differentiating between those with NH and the normal controls. METHODS: A total of 88 patients with NH were enrolled, including 50 patients with ABE and 38 ABE-negative individuals, and 70 age-matched normal neonates were included as controls. All participants were divided into training and validation cohorts in a 7:3 ratio. Radiomics features extracted from the basal ganglia of T1-weighted sequences on magnetic resonance imaging were evaluated and selected to set up the prediction model using the K-nearest neighbour-based bagging algorithm. A receiver operating characteristic curve was plotted to assess the differentiating performance of the radiomics-based model. RESULTS: Four of 744 radiomics features were selected for the diagnostic model of ABE. The radiomics model yielded an area under the curve (AUC) of 0.81 and 0.82 in the training and test cohorts, with accuracy, precision, sensitivity, and specificity of 0.82, 0.80, 0.91, and 0.69 and 0.78, 0.8, 0.8, and 0.75, respectively. Six radiomics features were selected in this model to distinguish those with NH from the normal controls. The AUC for the training cohort was 0.97, with an accuracy of 0.92, a precision of 0.92, a sensitivity of 0.93, and a specificity of 0.90. The performance of the radiomics model was confirmed by testing the test cohort, and the AUC, accuracy, precision, sensitivity, and specificity were 0.97, 0.92, 0.96, 0.89, and 0.95, respectively. CONCLUSIONS: The proposed radiomics model based on traditional TI-weighted sequences may be used effectively for identifying ABE and even differentiating patients with NH from the normal controls, which can provide microcosmic information beyond experience-dependent vision and potentially assist in clinical diagnosis and treatment.


Subject(s)
Hyperbilirubinemia, Neonatal , Radiology , Infant, Newborn , Humans , Hyperbilirubinemia, Neonatal/diagnostic imaging , Algorithms , Area Under Curve , ROC Curve
9.
Nat Commun ; 14(1): 5289, 2023 Aug 30.
Article in English | MEDLINE | ID: mdl-37648700

ABSTRACT

Ruthenium exhibits comparable or even better alkaline hydrogen evolution reaction activity than platinum, however, the mechanistic aspects are yet to be settled, which are elucidated by combining in situ Raman spectroscopy and theoretical calculations herein. We simultaneously capture dynamic spectral evidence of Ru surfaces, interfacial water, *H and *OH intermediates. Ru surfaces exist in different valence states in the reaction potential range, dissociating interfacial water differently and generating two distinct *H, resulting in different activities. The local cation tuning effect of hydrated Na+ ion water and the large work function of high-valence Ru(n+) surfaces promote interfacial water dissociation. Moreover, compared to low-valence Ru(0) surfaces, high-valence Ru(n+) surfaces have more moderate adsorption energies for interfacial water, *H, and *OH. They, therefore, facilitate the activity. Our findings demonstrate the regulation of valence state on interfacial water, intermediates, and finally the catalytic activity, which provide guidelines for the rational design of high-efficiency catalysts.

10.
Biotechnol Lett ; 45(10): 1381-1391, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37589824

ABSTRACT

OBJECTIVE: In this study, we established an efficient and rapid transient expression system in the protoplasts of Pinellia ternata (Thunb.) Breit. (P. ternata). RESULTS: The protoplasts of P. ternata were prepared from plant leaves as the source material by digesting them with the combination of 20 g·l-1 cellulase and 15 g·l-1 macerozyme for 6 h. Based on the screening of PEG concentration, the conditions for PEG-mediated protoplast transformation were improved, and the highest transformation efficiency was found for 40% PEG 4000. Furthermore, we used the subcellular protein localization technique in P. ternata protoplasts to allow further validation of transient expression system. CONCLUSIONS: We present the method that can be applicable for studying both gene verification and expression in P. ternata protoplasts, thus allowing for engineering the improved varieties of P. ternata through molecular plant breeding techniques. This method can also be widely applicable for analyzing protein interactions, detecting promoter activity, for somatic cell fusion in plant breeding, as well as for other related studies.


Subject(s)
Cellulase , Pinellia , Pinellia/genetics , Protoplasts , Plant Breeding , DNA Shuffling
11.
J Fungi (Basel) ; 9(7)2023 Jul 20.
Article in English | MEDLINE | ID: mdl-37504753

ABSTRACT

Morel is a popular edible mushroom with considerable medicinal and economic value which has garnered global popularity. However, the increasing heavy metal (HM) pollution in the soil presents a significant challenge to morels cultivation. Given the susceptibility of morels to HM accumulation, the quality and output of morels are at risk, posing a serious food safety concern that hinders the development of the morel industry. Nonetheless, research on the mechanism of HM enrichment and mitigation strategies in morel remains scarce. The morel, being cultivated in soil, shows a positive correlation between HM content in its fruiting body and the HM content in the soil. Therefore, soil remediation emerges as the most practical and effective approach to tackle HM pollution. Compared to physical and chemical remediation, bioremediation is a low-cost and eco-friendly approach that poses minimal threats to soil composition and structure. HMs easily enriched during morels cultivation were examined, including Cd, Cu, Hg, and Pb, and we assessed soil passivation technology, microbial remediation, strain screening and cultivation, and agronomic measures as potential approaches for HM pollution prevention. The current review underscores the importance of establishing a comprehensive system for preventing HM pollution in morels.

12.
Sensors (Basel) ; 23(12)2023 Jun 09.
Article in English | MEDLINE | ID: mdl-37420640

ABSTRACT

With the development of 3D sensors technology, 3D point cloud is widely used in industrial scenes due to their high accuracy, which promotes the development of point cloud compression technology. Learned point cloud compression has attracted much attention for its excellent rate distortion performance. However, there is a one-to-one correspondence between the model and the compression rate in these methods. To achieve compression at different rates, a large number of models need to be trained, which increases the training time and storage space. To address this problem, a variable rate point cloud compression method is proposed, which enables the adjustment of the compression rate by the hyperparameter in a single model. To address the narrow rate range problem that occurs when the traditional rate distortion loss is jointly optimized for variable rate models, a rate expansion method based on contrastive learning is proposed to expands the bit rate range of the model. To improve the visualization effect of the reconstructed point cloud, a boundary learning method is introduced to improve the classification ability of the boundary points through boundary optimization and enhance the overall model performance. The experimental results show that the proposed method achieves variable rate compression with a large bit rate range while ensuring the model performance. The proposed method outperforms G-PCC, achieving more than 70% BD-Rate against G-PCC, and performs about, as well as the learned methods at high bit rates.


Subject(s)
Data Compression , Physical Phenomena , Industry , Learning , Technology
13.
Chemosphere ; 337: 139326, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37392792

ABSTRACT

The existence of excessive tetracycline hydrochloride (TCH) in the ecological environment has seriously threatened human health, so there is an urgent need to develop a high-performance photocatalyst that can efficiently and greenly remove TCH. Currently, most photocatalysts have the problems of fast recombination of photogenerated charge carriers and low degradation efficiency. Herein, S-scheme AgI/Bi4O5I2 (AB) heterojunctions was constructed for TCH removal. Compared with the single component, the apparent kinetic constant of the 0.7AB is 5.6 and 10.2 time as high as the AgI and Bi4O5I2, and the photocatalytic activity only decreases by 3.0% after four recycle runs. In addition, to verify the potential practical application of the fabricated AgI/Bi4O5I2 nanocomposite, the photocatalytic degradation of TCH was performed under different conditions by regulating the dosage of photocatalyst, the TCH concentration, pH, and the existence of various anions. Systematical characterizations are conducted to investigate the intrinsic physical and chemical properties of the constructed AgI/Bi4O5I2 composites. Based on the synergetic characterizations by in situ X-ray photoelectron spectroscopy, band edge measurements, as well as reactive oxygen species (ROS) detections, the S-scheme photocatalytic mechanism is proved. This work provides a valuable reference for developing efficient and stable S-scheme AgI/Bi4O5I2 photocatalyst for TCH removal.


Subject(s)
Nanocomposites , Tetracycline , Humans , Light , Environment , Kinetics
14.
Molecules ; 28(11)2023 Jun 02.
Article in English | MEDLINE | ID: mdl-37298996

ABSTRACT

ZnIn2S4 (ZIS) is widely used in the field of photocatalytic hydrogen production due to its unique photoelectric properties. Nonetheless, the photocatalytic performance of ZIS usually faces problems of poor conductivity and rapid recombination of charge carriers. Heteroatom doping is often regarded as one of the effective strategies for improving the catalytic activity of photocatalysts. Herein, phosphorus (P)-doped ZIS was prepared by hydrothermal method, whose photocatalytic hydrogen production performance and energy band structure were fully studied. The band gap of P-doped ZIS is about 2.51 eV, which is slightly smaller than that of pure ZIS. Moreover, due to the upward shift of its energy band, the reduction ability of P-doped ZIS is enhanced, and P-doped ZIS also exhibits stronger catalytic activity than pure ZIS. The optimized P-doped ZIS exhibits a hydrogen production rate of 1566.6 µmol g-1 h-1, which is 3.8 times that of the pristine ZIS (411.1 µmol g-1 h-1). This work provides a broad platform for the design and synthesis of phosphorus-doped sulfide-based photocatalysts for hydrogen evolution.


Subject(s)
Hydrogen , Light , Electric Conductivity , Phosphorus
15.
Biochim Biophys Acta Mol Cell Res ; 1870(8): 119525, 2023 12.
Article in English | MEDLINE | ID: mdl-37348763

ABSTRACT

BACKGROUND: Psoriasis is a common inflammatory skin disease characterized by the excessive proliferation and abnormal differentiation of keratinocytes. Protein kinases could act on intracellular signaling pathways associated with cell proliferation. OBJECTIVE: Identifying more hub protein kinases affecting cellular and molecular processes in psoriasis, and exploring the dynamic effects of baicalin and NEK2 on the IL-22-induced cellular inflammation and IMQ-induced psoriasis-like mice. METHODS AND RESULTS: In this study, differentially expressed protein kinases playing a hub role in psoriasis initiation and development were identified using integrative bioinformatics analyses, and NEK2 has been chosen. NEK2 was significantly up-regulated in psoriatic samples according to online datasets and experimental analyses. In IL-22-induced cellular inflammation model in HaCaT cells, NEK2 overexpression promoted, whereas NEK2 knockdown partially abolished IL-22-induced alterations in cell viability, DNA synthesis, cytokine levels, as well as STAT3 phosphorylation and p-RB, cyclin D1, CDK4, and CDK6 protein contents. Baicalin treatment partially suppressed IL-22-induced HaCaT cell viability, DNA synthesis, and increases in cytokine levels, whereas NEK2 overexpression significantly abolished Baicalin-induced protection against cellular inflammation. In IMQ-induced psoriasis-like skin inflammation model in mice, baicalin markedly ameliorated IMQ-induced psoriasis-like symptoms and local skin inflammation, whereas NEK2 overexpression partially eliminated the therapeutic effects of baicalin. CONCLUSION: NEK2, up-regulated in psoriatic lesion skin, could aggravate IMQ-induced psoriasis-like dermatitis and attenuate the therapeutic efficiency of baicalin through promoting keratinocyte proliferation and cytokine levels. The STAT3 signaling might be involved.


Subject(s)
Dermatitis , Psoriasis , Animals , Mice , Cell Proliferation , Cytokines/metabolism , Dermatitis/drug therapy , Dermatitis/metabolism , Dermatitis/pathology , DNA , Imiquimod/adverse effects , Inflammation/metabolism , Keratinocytes/pathology , Protein Kinases/metabolism , Psoriasis/chemically induced , Psoriasis/genetics , Skin/pathology , Interleukin-22
16.
Neurophotonics ; 10(2): 025003, 2023 Apr.
Article in English | MEDLINE | ID: mdl-37064779

ABSTRACT

Significance: Accurate evaluation of consciousness in patients with prolonged disorders of consciousness (DOC) is critical for designing therapeutic plans, determining rehabilitative services, and predicting prognosis. Effective ways for detecting consciousness in patients with DOC are still needed. Aim: Evaluation of the residual awareness in patients with DOC and investigation of the spatiotemporal differences in the hemodynamic responses between the minimally conscious state (MCS) and the unresponsive wakefulness syndrome (UWS) groups using active command-driven motor imagery (MI) tasks. Approach: In this study, functional near-infrared spectroscopy (fNIRS) was used to measure the changes of hemodynamic responses in 19 patients with DOC (9 MCS and 10 UWS) using active command-driven MI tasks. The characteristics of the hemodynamic responses were extracted to compare the differences between the MCS and UWS groups. Moreover, the correlations between the hemodynamic responses and the clinical behavioral evaluations were also studied. Results: The results showed significant differences in the spatiotemporal distribution of the hemodynamic responses between the MCS and UWS groups. For the patients with MCS, significant increases in task-evoked hemodynamic responses occurred during the "YES" questions of the command-driven MI tasks. Importantly, these changes were significantly correlated with their coma-recovery scale-revised (CRS-R) scores. However, for the patients with UWS, no significant changes of the hemodynamic responses were found. Additionally, the results did not show any statistical correlation between the hemodynamic responses and their CRS-R scores. Conclusions: The fNIRS-based command-driven MI tasks can be used as a promising tool for detecting residual awareness in patients with DOC. We hope that the findings and the active paradigm used in this study will provide useful insights into the diagnosis, therapy, and prognosis of this challenging patient population.

17.
J Fluoresc ; 33(5): 1949-1959, 2023 Sep.
Article in English | MEDLINE | ID: mdl-36930342

ABSTRACT

The development of fluorescent probe for hydrazine (N2H4) detection has attracted much attention due to the important role of N2H4 plays in the fields of medicine, agriculture, biology and environments. In this paper, the optical properties and water solubility of two novel two-photon fluorescent molecular probes (Probe1 and Probe2) before and after the reaction with N2H4 are studied by using the density function theory. The results show that electronic distribution and transition dipole moment of the probes are obviously changed after the reaction with N2H4, thus the optical properties of the molecules are influenced and the detection of N2H4 are realized. In addition, photoinduced electron transfer processes for Probe1 and Probe2 in the presence of N2H4 are theoretically characterized, which explains the experimental observations from the microscopic mechanism. Special attention has been paid on the analysis of the two-photon absorption for the probes with the absence and presence of N2H4 by the response theory method. Both probes with good water solubility show large variation on the two-photon absorption cross section when reacts with N2H4. In particular, the two-photon absorption response of Probe2 is more obvious, so it possesses preferable two-photon fluorescence microscopic imaging ability. More importantly, the receptor effect on the sensing performances of the probes are demonstrated, providing a theoretical reference for the design and synthesis on more efficient two-photon fluorescence N2H4 probes. Our study provides necessary information on the response mechanism of the studied chemosensors and helps to establish the relationship between the structure and optical properties of two-photon fluorescence N2H4 probes.

18.
Molecules ; 28(6)2023 Mar 19.
Article in English | MEDLINE | ID: mdl-36985749

ABSTRACT

Traditional graphite anode material typically shows a low theoretical capacity and easy lithium decomposition. Molybdenum disulfide is one of the promising anode materials for advanced lithium-ion batteries, which possess low cost, unique two-dimensional layered structure, and high theoretical capacity. However, the low reversible capacity and the cycling-capacity retention rate induced by its poor conductivity and volume expansion during cycling blocks further application. In this paper, a collaborative control strategy of monodisperse MoS2/graphite composites was utilized and studied in detail. MoS2/graphite nanocomposites with different ratios (MoS2:graphite = 20%:80%, 40%:60%, 60%:40%, and 80%:20%) were prepared by mechanical ball-milling and low-temperature annealing. The graphite sheets were uniformly dispersed between the MoS2 sheets by the ball-milling process, which effectively reduced the agglomeration of MoS2 and simultaneously improved the electrical conductivity of the composite. It was found that the capacity of MoS2/graphite composites kept increasing along with the increasing percentage of MoS2 and possessed the highest initial discharge capacity (832.70 mAh/g) when MoS2:graphite = 80%:20%. This facile strategy is easy to implement, is low-cost, and is cosmically produced, which is suitable for the development and manufacture of advance lithium-ion batteries.

19.
Sensors (Basel) ; 23(3)2023 Feb 02.
Article in English | MEDLINE | ID: mdl-36772652

ABSTRACT

High-speed detection of abnormal frames in surveillance videos is essential for security. This paper proposes a new video anomaly-detection model, namely, feature trajectory-smoothed long short-term memory (FTS-LSTM). This model trains an LSTM autoencoder network to generate future frames on normal video streams, and uses the FTS detector and generation error (GE) detector to detect anomalies on testing video streams. FTS loss is a new indicator in the anomaly-detection area. In the training stage, the model applies a feature trajectory smoothness (FTS) loss to constrain the LSTM layer. This loss enables the LSTM layer to learn the temporal regularity of video streams more precisely. In the detection stage, the model utilizes the FTS loss and the GE loss as two detectors to detect anomalies. By cascading the FTS detector and the GE detector to detect anomalies, the model achieves a high speed and competitive anomaly-detection performance on multiple datasets.

20.
J Oleo Sci ; 72(2): 117-130, 2023 Feb 04.
Article in English | MEDLINE | ID: mdl-36631101

ABSTRACT

The flaxseed-sesame paste (FSP) was prepared by mixing the heat-treated flaxseed and sesame seeds in different proportions and grinding them in a colloid mill to obtain a FSP. In this study, flaxseed was added to sesame paste (SP) at different addition to assess its effect on the rheological properties, textural properties, and particle size. The effect of flaxseed addition on lipid oxidation and volatile aldehydes and ketones during storage of SP was investigated by accelerated oxidation experiments (63°C, 60 days). Notably, the addition of all different additions of flaxseed increased the linolenic acid content, and also enhanced the hardness, cohesiveness, and viscosity of SP. However, it increased the rate of lipid oxidation in SP during storage, mainly in the form of higher acid value (AV) and malondialdehyde (MDA) content. The content of volatile aldehydes and ketones from lipid oxidation increased significantly with storage time. It was found by using cluster analysis that mixing flaxseed with SP at a ratio of 20 g/100 g had little effect on its storage stability, the sample had a higher overall quality than the addition of 40 g/100 g flaxseed, and its linolenic acid content was 18.7 times higher than that of the SP. Collectively, the results indicated that the addition of flaxseed at an appropriate proportion might be a feasible way to prepare the functional formulated SP.


Subject(s)
Flax , Sesamum , alpha-Linolenic Acid/analysis , Oxidation-Reduction , Malondialdehyde
SELECTION OF CITATIONS
SEARCH DETAIL
...