Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 295
Filter
1.
Opt Express ; 32(12): 20449-20458, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38859426

ABSTRACT

Liquid crystal (LC) gratings have played important roles in light field control due to the advantages of being lightweight, low cost, having no moving parts, and low power consumption. However, the chromatic aberration limits the bandwidth of the LC device and affects the efficiency of the grating. To solve the chromatic aberration issue, a broadband wavelength designable achromatic grating is proposed. Different grating structures are integrated into a single-layer templated cholesteric liquid crystal (CLC) device, and the achromatic diffraction wavelength of the grating can be freely designed from the visible spectral region to the infrared range within the Bragg reflection band of the CLCs. The diffraction intensity of different orders can be changed with the electric field applied to meet the need for dynamic modulation. This grating shows suitable potential applications in optical communication and displays.

2.
BMC Nurs ; 23(1): 380, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38840132

ABSTRACT

BACKGROUND: Oral nutritional supplements are one of the preferred methods of nutritional support for postoperative patients. This study aims to investigate the current status of oral nutritional supplements compliance in postoperative patients with digestive tract tumors and its influencing factors. METHODS: Convenience sampling was employed to select 242 patients who underwent surgery for digestive tract tumors at a tertiary hospital in Shanghai from October 2022 to July 2023 as the study subjects. Data following a normal distribution were analyzed using independent sample t-tests, ANOVA single-factor analysis, Pearson correlation analysis, and multiple linear regression analysis to determine the factors influencing compliance with oral nutritional supplements. RESULTS: A total of 252 questionnaires were distributed, with 10 invalid questionnaires excluded, resulting in an effective questionnaire rate of 96.03%. The compliance score for oral nutritional supplements in postoperative patients with digestive tract tumors was (2.40 ± 1.45), General Self-efficacy Scale (GSES) score was (24.72 ± 4.86), Multidimensional Scale of Perceived Social Support Scale (MSPSS) score was (58.67 ± 11.09), and Belief about Medicines Questionnaire Scale (BMQ) score was (0.17 ± 2.78). Multiple linear regression analysis revealed that age, adverse reactions, educational level, self-efficacy, medication beliefs, and social support were factors influencing compliance with oral nutritional supplements in postoperative patients with digestive tract tumors (P < 0.05). CONCLUSION: Our study revealed that the compliance to oral nutritional supplements among postoperative patients with digestive tract tumors was at a moderate level and was closely associated with age, educational level, adverse reactions to oral nutritional supplements, medication beliefs, social support, and self-efficacy. Nursing staff should conduct nursing assessments based on the specific circumstances of patients and their families, provide personalized health education management plans based on the patients' educational level, enhance patients' nutrition knowledge, improve patient self-efficacy, and enhance social support for patients, while further improving patient nutrition management.

3.
Inflamm Regen ; 44(1): 30, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38844990

ABSTRACT

BACKGROUND: The chemokine CX3CL1 has been reported to play an important role in optic nerve protection, but the underlying mechanism is still unclear. CX3CR1, the only receptor of CX3CL1, is specifically expressed on retinal microglia, whose activation plays a role in the pathological process of optic nerve injury. This study aimed to evaluate whether CX3CL1 exerts optic neuroprotection by affecting the activation of microglia by combining with CX3CR1. METHODS: A mouse model of distal optic nerve trauma (ONT) was used to evaluate the effects of the CX3CL1-CX3CR1 axis on the activation of microglia and survival or axonal regeneration of retinal ganglion cells (RGCs). The activation of microglia, loss of RGCs, and damage to visual function were detected weekly till 4 weeks after modeling. CX3CL1 was injected intravitreally immediately or delayed after injury and the status of microglia and RGCs were examined. RESULTS: Increases in microglia activation and optic nerve damage were accompanied by a reduced production of the CX3CL1-CX3CR1 axis after the distal ONT modeling. Both immediate and delayed intravitreal injection of CX3CL1 inhibited microglia activation, promoted survival of RGCs, and improved axonal regenerative capacity. Injection with CX3CL1 was no longer effective after 48 h post ONT. The CX3CL1-CX3CR1 axis promotes survival and axonal regeneration, as indicated by GAP43 protein and gene expression, of RGCs by inhibiting the microglial activation after ONT. CONCLUSIONS: The CX3CL1-CX3CR1 axis could promote survival and axonal regeneration of RGCs by inhibiting the microglial activation after optic nerve injury. The CX3CL1-CX3CR1 axis may become a potential target for the treatment of optic nerve injury. Forty-eight hours is the longest time window for effective treatment after injury. The study is expected to provide new ideas for the development of targeted drugs for the repair of optic nerve.

4.
J Pharm Biomed Anal ; 247: 116265, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38850849

ABSTRACT

Dingchuan Decoction (DCD) is a traditional Chinese medicine prescription commonly used in the treatment of asthma, but the mechanism of DCD in treating asthma has not yet been determined. In this study, we employed a combination of metabolomics and network pharmacology to investigate the mechanism of DCD in treating asthma. An allergic asthma rat model was induced by ovalbumin (OVA). Metabolomics based on 1H NMR and UHPLC-MS was used to identify differential metabolites and obtain the major metabolic pathways and potential targets. Network pharmacology was utilized to explore potential targets of DCD for asthma treatment. Finally, the results of metabolomics and network pharmacology were integrated to obtain the key targets and metabolic pathways of DCD for the therapy of asthma, and molecular docking was utilized to validate the key targets. A total of 76 important metabolites and 231 potential targets were identified through metabolomics. Using network pharmacology, 184 potential therapeutic targets were obtained. These 184 targets were overlaid with the 231 potential targets obtained through metabolomics and were analyzed in conjunction with metabolic pathways. Ultimately, the key targets were identified as aldehyde dehydrogenase 2 (ALDH2) and amine oxidase copper-containing 3 (AOC3), and the relevant metabolic pathways affected were glycolysis and gluconeogenesis as well as arginine and proline metabolism. Molecular docking showed that the key targets had high affinity with the relevant active ingredients in DCD, which further demonstrated that DCD may exert therapeutic effects by acting on the key targets. The present study demonstrated that DCD can alleviate OVA-induced allergic asthma and that DCD may have a therapeutic effect by regulating intestinal flora and polyamine metabolism through its effects on ALDH2 and AOC3.

5.
Plant Physiol Biochem ; 213: 108792, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38851149

ABSTRACT

Tuber flesh pigmentation, conferred by the presence of secondary metabolite anthocyanins, is one of many key agronomic traits for potato tubers. Although several genes of potato anthocyanin biosynthesis have been reported, transcription factors (TFs) contributing to tuber flesh pigmentation are still not fully understood. In this study, transcriptomic profiling of diploid potato accessions with or without tuber flesh pigmentation was conducted and genes of the anthocyanin biosynthesis pathway were found significantly enriched within the 1435 differentially expressed genes (DEGs). Weighted Gene Co-expression Network Analysis (WGCNA) and connectivity analysis pinpointed a subset of 173 genes closely related to the key biosynthetic gene StDFR. Of the eight transcription factors in the subset, group III WRKY StWRKY70, was chosen for showing high connectivity to StDFR and ten other anthocyanin biosynthetic genes and homology to known WRKYs of anthocyanin pathway. The transient activation assay showed StWRKY70 predominantly stimulated the expression of StDFR and StANS as well as the accumulation of anthocyanins by enhancing the function of the MYB transcription factor StAN1. Furthermore, the interaction between StWRKY70 and StAN1 was verified by Y2H and BiFC. Our analysis discovered a new transcriptional activator StWRKY70 which potentially involved in tuber flesh pigmentation, thus may lay the foundation for deciphering how the WRKY-MYB-bHLH-WD40 (WRKY-MBW) complex regulate the accumulation of anthocyanins and provide new strategies to breed for more nutritious potato varieties with enhanced tuber flesh anthocyanins.

6.
J Appl Clin Med Phys ; : e14397, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38773719

ABSTRACT

BACKGROUND: CT-image segmentation for liver and hepatic vessels can facilitate liver surgical planning. However, time-consuming process and inter-observer variations of manual segmentation have limited wider application in clinical practice. PURPOSE: Our study aimed to propose an automated deep learning (DL) segmentation algorithm for liver and hepatic vessels on portal venous phase CT images. METHODS: This retrospective study was performed to develop a coarse-to-fine DL-based algorithm that was trained, validated, and tested using private 413, 52, and 50 portal venous phase CT images, respectively. Additionally, the performance of the DL algorithm was extensively evaluated and compared with manual segmentation using an independent clinical dataset of preoperative contrast-enhanced CT images from 44 patients with hepatic focal lesions. The accuracy of DL-based segmentation was quantitatively evaluated using the Dice Similarity Coefficient (DSC) and complementary metrics [Normalized Surface Dice (NSD) and Hausdorff distance_95 (HD95) for liver segmentation, Recall and Precision for hepatic vessel segmentation]. The processing time for DL and manual segmentation was also compared. RESULTS: Our DL algorithm achieved accurate liver segmentation with DSC of 0.98, NSD of 0.92, and HD95 of 1.52 mm. DL-segmentation of hepatic veins, portal veins, and inferior vena cava attained DSC of 0.86, 0.89, and 0.94, respectively. Compared with the manual approach, the DL algorithm significantly outperformed with better segmentation results for both liver and hepatic vessels, with higher accuracy of liver and hepatic vessel segmentation (all p < 0.001) in independent 44 clinical data. In addition, the DL method significantly reduced the manual processing time of clinical postprocessing (p < 0.001). CONCLUSIONS: The proposed DL algorithm potentially enabled accurate and rapid segmentation for liver and hepatic vessels using portal venous phase contrast CT images.

8.
J Transl Med ; 22(1): 440, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38720358

ABSTRACT

PURPOSE: To explore the impact of microRNA 146a (miR-146a) and the underlying mechanisms in profibrotic changes following glaucoma filtering surgery (GFS) in rats and stimulation by transforming growth factor (TGF)-ß1 in rat Tenon's capsule fibroblasts. METHODS: Cultured rat Tenon's capsule fibroblasts were treated with TGF-ß1 and analyzed with microarrays for mRNA profiling to validate miR-146a as the target. The Tenon's capsule fibroblasts were then respectively treated with lentivirus-mediated transfection of miR-146a mimic or inhibitor following TGF-ß1 stimulation in vitro, while GFS was performed in rat eyes with respective intraoperative administration of miR-146a, mitomycin C (MMC), or 5-fluorouracil (5-FU) in vivo. Profibrotic genes expression levels (fibronectin, collagen Iα, NF-KB, IL-1ß, TNF-α, SMAD4, and α-smooth muscle actin) were determined through qPCR, Western blotting, immunofluorescence staining and/or histochemical analysis in vitro and in vivo. SMAD4 targeting siRNA was further used to treat the fibroblasts in combination with miR-146a intervention to confirm its role in underlying mechanisms. RESULTS: Upregulation of miR-146a reduced the proliferation rate and profibrotic changes of rat Tenon's capsule fibroblasts induced by TGF-ß1 in vitro, and mitigated subconjunctival fibrosis to extend filtering blebs survival after GFS in vivo, where miR-146a decreased expression levels of NF-KB-SMAD4-related genes, such as fibronectin, collagen Iα, NF-KB, IL-1ß, TNF-α, SMAD4, and α-smooth muscle actin(α-SMA). Additionally, SMAD4 is a key target gene in the process of miR-146a inhibiting fibrosis. CONCLUSIONS: MiR-146a effectively reduced TGF-ß1-induced fibrosis in rat Tenon's capsule fibroblasts in vitro and in vivo, potentially through the NF-KB-SMAD4 signaling pathway. MiR-146a shows promise as a novel therapeutic target for preventing fibrosis and improving the success rate of GFS.


Subject(s)
Fibroblasts , Fibrosis , Filtering Surgery , Glaucoma , MicroRNAs , Rats, Sprague-Dawley , Animals , MicroRNAs/metabolism , MicroRNAs/genetics , Glaucoma/pathology , Glaucoma/genetics , Filtering Surgery/adverse effects , Fibroblasts/metabolism , Male , Tenon Capsule/metabolism , Tenon Capsule/pathology , Cell Proliferation/drug effects , Transforming Growth Factor beta1/metabolism , Rats , Smad4 Protein/metabolism , Smad4 Protein/genetics , NF-kappa B/metabolism , Mitomycin/pharmacology , Mitomycin/therapeutic use , Gene Expression Regulation
9.
Phytochem Anal ; 2024 May 20.
Article in English | MEDLINE | ID: mdl-38768606

ABSTRACT

INTRODUCTION: Lipid molecules are present in tumours and play an important role in the anti-inflammatory response as well as in antiviral protection. Changes in the type and location of lipids in the intestine following exposure to environmental stressors play an important role in several disorders, including ulcerative colitis (UC), inflammatory bowel disease (IBD), and colorectal cancer. OBJECTIVES: The aim of this work is to provide a new theoretical basis for tumour initiation and development by accurately measuring the spatial distribution of lipids and metabolites in intestinal tissue. Spatial metabolomics allows the detection of samples with minimal sample volume by label-free imaging of complex samples in their original state. The distribution of lipid molecules in tumours has not been reported, although the distribution of lipid molecules in intestinal tissue has been reported in the literature. METHODS: The range of lipid profiles in colon cancer mouse tumour tissue was compiled using a spatial metabolomics: lipid extraction method. The changes in lipid distribution in two regions after oral administration of American Ginseng (Panax quinquefolius L.) vesicles were also compared. Tumour tissue samples were extracted with 80% methanol-20% formic acid in water. RESULTS: The resulting spatial metabolic profile allowed the identification of seven lipid classes in mouse tumours. The distribution of fibre tissue cells was 23.2% higher than tumour tissue cells, with the exception of the fatty acid (FA) species.

10.
bioRxiv ; 2024 May 15.
Article in English | MEDLINE | ID: mdl-38798384

ABSTRACT

The flaviviral NS2B/NS3 protease is a conserved enzyme required for flavivirus replication. Its highly dynamic conformation poses major challenges but also offers opportunities for antiviral inhibition. Here, we established a nanopore tweezers-based platform to monitor NS2B/NS3 conformational dynamics in real-time. Molecular simulations coupled with electrophysiology revealed that the protease could be captured in the middle of the ClyA nanopore lumen, stabilized mainly by dynamic electrostatic interactions. We designed a new Salmonella typhi ClyA nanopore with enhanced nanopore/protease interaction that can resolve the open and closed states at the single-molecule level for the first time. We demonstrated that the tailored ClyA could track the conformational transitions of the West Nile NS2B/NS3 protease and unravel the conformational energy landscape of various protease constructs through population and kinetic analysis. The new ClyA-protease platform paves a way to high-throughput screening strategies for discovering new allosteric inhibitors that target the NS2B and NS3 interface.

11.
Transplant Cell Ther ; 2024 May 11.
Article in English | MEDLINE | ID: mdl-38740140

ABSTRACT

Nodal peripheral T cell lymphomas (PTCLs) are challenging subsets of non-Hodgkin lymphomas characterized by their heterogeneity and aggressive clinical behavior. Given the mixed outcomes reported in previous studies, the efficacy of autologous hematopoietic cell transplantation (auto-SCT) as a consolidation strategy following initial chemotherapy response remains uncertain. This study aims to evaluate the impact of upfront auto-SCT consolidation on overall survival (OS) and event-free survival (EFS) among patients with nodal PTCL who achieved a complete or partial response to initial chemotherapy. A retrospective cohort study was conducted at Moffitt Cancer Center, involving 123 patients with nodal PTCL treated between February 2005 and February 2021. Patients were stratified into 2 groups based on whether they received auto-SCT as part of their initial treatment strategy. Kaplan-Meier method and Cox proportional hazard models were used for statistical analysis to compare OS and EFS between groups. Patients undergoing auto-SCT after first response demonstrated significantly longer median OS (12.3 versus 4.3 yr; P = .035) and EFS (6.2 versus 2.2 yr; P = .003) compared to those who did not. Multivariate analyses indicated that auto-SCT at first response and younger age at diagnosis were favorable prognostic factors. The findings suggest that upfront auto-SCT consolidation can significantly improve long-term outcomes in patients with nodal PTCL, supporting the strategy of early auto-SCT consideration and referral following initial chemotherapy response. These results underscore the importance of integrating upfront auto-SCT into the treatment paradigm for nodal PTCL, emphasizing early referral to transplantation services to optimize patient outcomes.

12.
Microbes Infect ; : 105350, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38723999

ABSTRACT

The widespread transmission of SARS-CoV-2 in humans poses a serious threat to public health security, and a growing number of studies have discovered that SARS-CoV-2 infection in wildlife and mutate over time. This article mainly reports the first systematic review and meta-analysis of the prevalence of SARS-CoV-2 in wildlife. The pooled prevalence of the 29 included articles was calculated by us using a random effects model (22.9%) with a high heterogeneity (I2 = 98.7%, p = 0.00). Subgroup analysis and univariate regression analysis found potential risk factors contributing to heterogeneity were country, wildlife species, sample type, longitude, and precipitation. In addition, the prevalence of SARS-CoV-2 in wildlife increased gradually over time. Consequently, it is necessary to comprehensively analyze the risk factors of SARS-CoV-2 infection in wildlife and develop effective control policies, as well as to monitor the mutation of SARS-CoV-2 in wildlife at all times to reduce the risk of SARS-CoV-2 transmission among different species.

13.
Int J Mol Sci ; 25(9)2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38731798

ABSTRACT

Aphids are insect pests that suck phloem sap and introduce salivary proteins into plant tissues through saliva secretion. The effector of salivary proteins plays a key role in the modulation of host plant defense responses and enhancing aphid host adaptation. Based on previous transcriptome sequencing results, a candidate effector cyclin-dependent kinase-like (CDK) was identified from the grain aphid Sitobion avenae. In this study, the function of SaCDK in wheat defense response and the adaptation of S. avenae was investigated. Our results showed that the transient overexpression of SaCDK in tobacco Nicotiana benthamiana suppressed cell death triggered by mouse pro-apoptotic protein-BAX or Phytophthora infestans PAMP-INF1. SaCDK, delivered into wheat cells through a Pseudomonas fluorescens-mediated bacterial type III secretion system, suppressed callose deposition in wheat seedlings, and the overexpression of SaCDK in wheat significantly decreased the expression levels of salicylic acid and jasmonic acid signaling pathway-related genes phenylalanine ammonia lyase (PAL), pathogenesis-related 1 protein (PR1), lipoxygenase (LOX) and Ω-3 fatty acid desaturase (FAD). In addition, aphid bioassay results showed that the survival and fecundity of S. avenae were significantly increased while feeding on the wheat plants carrying SaCDK. Taken together, our findings demonstrate that the salivary protein SaCDK is involved in inhibiting host defense response and improving its host adaptation, which lays the foundation to uncover the mechanism of the interaction of cereal aphids and host plants.


Subject(s)
Aphids , Triticum , Animals , Aphids/physiology , Triticum/parasitology , Triticum/genetics , Triticum/metabolism , Salivary Proteins and Peptides/metabolism , Salivary Proteins and Peptides/genetics , Insect Proteins/metabolism , Insect Proteins/genetics , Adaptation, Physiological , Plant Diseases/parasitology , Gene Expression Regulation, Plant , Nicotiana/parasitology , Nicotiana/genetics , Cyclopentanes/metabolism , Oxylipins
14.
J Ethnopharmacol ; 329: 118061, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38614265

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Fangji Huangqi Decoction (FHD) is frequently prescribed for the clinical treatment of wind-cold and wind-dampness pathogenic superficial deficiency syndrome. It also has a notable curative effect on rheumatoid arthritis (RA). AIM OF THE STUDY: The study aimed to explore the possible mechanism of FHD against RA and provided a theoretical basis for alternative therapies for RA. MATERIALS AND METHODS: We used UPLC-Q-TOF-MS to analysis the ingredients and absorbed blood components of FHD. At the same time, the collagen-induced arthritis (CIA) rat model was established to estimate the therapeutic effects on FHD by considering body weight, arthritis score, paw swelling, autonomous movement ability, and synovial microvessel counts. Subsequently, immunofluorescence, immunohistochemistry, and Western blot were employed to detect the anti-angiogenic capacity of FHD in vivo, as well as the levels of apoptosis and autophagy in the synovial tissue. In addition, flow cytometry and Western blot were used to assess the effects of FHD on apoptosis and autophagy in MH7A cells. The effects of FHD on the proliferation and migration of MH7A cells were measured by CCK8 assay, cell migration and, invasion experiments. Finally, a tube formation assay was performed to evaluate the angiogenic capacity of FHD in co-cultures of MH7A cells and HUVEC cells. RESULTS: Through testing of FHD's original formula, a total of 26 active ingredients have been identified, with 17 of them being absorbed into the bloodstream. FHD significantly improved the pathological symptoms and synovial hyperplasia of CIA rats. FHD could suppress the expression of HIF-1α, promote apoptosis in CIA rat synovial tissue, and suppress autophagy and angiogenesis. In vitro experiments showed that serum containing FHD inhibited the proliferation, migration, and invasion of MH7A cells, and also suppressed the expression of autophagy-related proteins while promoting apoptosis. FHD markedly repressed the expression of HIF-1α protein in TNF-α-stimulated MH7A cells and inhibited the tube formation capacity induced by MH7A cells in HUVEC cells. CONCLUSIONS: The study had proven that FHD played an excellent anti-RA role, which may be attributed to its potential mechanism of regulating the balance between autophagy and apoptosis in RA FLS by suppressing the HIF-1α, thus contributing to its anti-angiogenic activities.


Subject(s)
Apoptosis , Arthritis, Experimental , Arthritis, Rheumatoid , Autophagy , Drugs, Chinese Herbal , Hypoxia-Inducible Factor 1, alpha Subunit , Neovascularization, Pathologic , Animals , Apoptosis/drug effects , Drugs, Chinese Herbal/pharmacology , Autophagy/drug effects , Arthritis, Rheumatoid/drug therapy , Arthritis, Experimental/drug therapy , Arthritis, Experimental/pathology , Rats , Male , Humans , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Neovascularization, Pathologic/drug therapy , Cell Line , Cell Movement/drug effects , Cell Proliferation/drug effects , Human Umbilical Vein Endothelial Cells/drug effects , Synovial Membrane/drug effects , Synovial Membrane/metabolism , Antirheumatic Agents/pharmacology , Angiogenesis
15.
Article in English | MEDLINE | ID: mdl-38568289

ABSTRACT

A new pimarane-type diterpene, ent-8(14),15-pimaradiene-2ß,19-diol (JXE-23), was isolated from the fern plant Aleuritopteris albofusca by our previous work; however, the biological activity of this diterpene remains unclear. In the present study, the anti-cancer potential of JXE-23 in various cancer cells was investigated. Among MCF-7 breast cancer cells, A549 lung cancer cells, and HepG2 liver cancer cells, JXE-23 displayed significant cytotoxicity to HepG2 cells with an IC50 value of 17.20 ± 1.73 µM, while showing no obvious toxicity in normal hepatocytes HL7702. JXE-23 inhibited cell growth and colony formation in HepG2 cells. A cell cycle distribution analysis showed that JXE-23 caused G2/M cell cycle arrest. Besides, JXE-23 also suppressed the migration of HepG2 cells. Interestingly, an increase of light chain 3 II (LC3II) and Beclin 1 and a decrease of P62 have occurred in JXE-23-treated cells, as well as the formation of GFP-LC3 dots, indicative of autophagy induction by JXE-23. When combined with autophagy inhibitor 3-methyladenine and chloroquine, the cell viability was significantly reduced, suggesting that JXE-23 triggered protective autophagy in hepatoma cells. Further study showed that JXE-23 inactivated the CIP2A/p-AKT/c-Myc signaling axis in HepG2 cells. Our data provided evidence that JXE-23 inhibited cell growth, arrested cells at the G2/M phase, and induced protective autophagy in HepG2 hepatocellular carcinoma cells. JXE-23 may be a potential lead compound for anti-cancer drug development, and autophagy inhibitor treatment may provide an effective strategy for improving its anti-cancer effect.

16.
J Proteome Res ; 23(4): 1174-1187, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38427982

ABSTRACT

Protein homeostasis is essential for cyanobacteria to maintain proper cellular function under adverse and fluctuating conditions. The AAA+ superfamily of proteolytic complexes in cyanobacteria plays a critical role in this process, including ClpXP, which comprises a hexameric ATPase ClpX and a tetradecameric peptidase ClpP. Despite the physiological effects of ClpX on growth and photosynthesis, its potential substrates and underlying mechanisms in cyanobacteria remain unknown. In this study, we employed a streptavidin-biotin affinity pull-down assay coupled with label-free proteome quantitation to analyze the interactome of ClpX in the model cyanobacterium Synechocystis sp. PCC 6803 (hereafter Synechocystis). We identified 503 proteins as potential ClpX-binding targets, many of which had novel interactions. These ClpX-binding targets were found to be involved in various biological processes, with particular enrichment in metabolic processes and photosynthesis. Using protein-protein docking, GST pull-down, and biolayer interferometry assays, we confirmed the direct association of ClpX with the photosynthetic proteins, ferredoxin-NADP+ oxidoreductase (FNR) and phycocyanin subunit (CpcA). Subsequent functional investigations revealed that ClpX participates in the maintenance of FNR homeostasis and functionality in Synechocystis grown under different light conditions. Overall, our study provides a comprehensive understanding of the extensive functions regulated by ClpX in cyanobacteria to maintain protein homeostasis and adapt to environmental challenges.


Subject(s)
Photosynthesis , Synechocystis , Photosynthesis/genetics , Synechocystis/genetics , Synechocystis/metabolism , Adenosine Triphosphatases/genetics , Adenosine Triphosphatases/metabolism , Phycocyanin/metabolism
17.
Addict Biol ; 29(3): e13385, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38488472

ABSTRACT

Alcohol consumption is popular worldwidely and closely associated with cardiovascular diseases. Influences of paternal preconception alcohol consumption on offspring cerebral arteries are largely unknown. Male rats were randomly given alcohol or water before being mated with alcohol-naive females to produce alcohol- and control-sired offspring. Middle cerebral artery (MCA) was tested with a Danish Myo Technology wire myograph, patch-clamp, IONOPTIX, immunofluorescence and quantitative PCR. Alcohol consumption enhanced angiotensin II (AngII)-mediated constriction in male offspring MCA mainly via AT1R. PD123,319 only augmented AngII-induced constriction in control offspring. AngII and Bay K8644 induced stronger intracellular calcium transient in vascular smooth muscle cells (VSMCs) from MCA of alcohol offspring. L-type voltage-dependent calcium channel (L-Ca2+ ) current at baseline and after AngII-stimulation was higher in VSMCs. Influence of large-conductance calcium-activated potassium channel (BKC a ) was lower. Caffeine induced stronger constriction and intracellular calcium release in alcohol offspring. Superoxide anion was higher in alcohol MCA than control. Tempol and thenoyltrifluoroacetone alleviated AngII-mediated contractions, while inhibition was significantly higher in alcohol group. The mitochondria were swollen in alcohol MCA. Despite lower Kcnma1 and Prkce expression, many genes expressions were higher in alcohol group. Hypoxia induced reactive oxygen species production and increased AT1R expression in control MCA and rat aorta smooth muscle cell line. In conclusion, this study firstly demonstrated paternal preconception alcohol potentiated AngII-mediated vasoconstriction in offspring MCA via ROS-AT1R. Alcohol consumption increased intracellular calcium via L-Ca2+ channel and endoplasmic reticulum and decreased BKCa function. The present study provided new information for male reproductive health and developmental origin of cerebrovascular diseases.


Subject(s)
Angiotensin II , Vasoconstriction , Female , Rats , Male , Animals , Angiotensin II/pharmacology , Angiotensin II/metabolism , Calcium/metabolism , Cerebral Arteries/metabolism , Alcohol Drinking , Oxidative Stress
18.
Biomed Pharmacother ; 174: 116467, 2024 May.
Article in English | MEDLINE | ID: mdl-38531120

ABSTRACT

In this study, Senescence Accelerated Mice (SAMP8) were supplemented with exogenous DHA milk, endogenous DHA milk, normal milk, or 0.9 % saline solution. Enzyme-linked immunosorbent assay (ELISA), gas chromatography (GC), ultra-performance liquid chromatography-electrospray ionization-tandem mass spectrometry (UPLC-ESI MS/MS), and Morris water maze were used to characterize the effects of diet on oxidative stress and cognition in SAMP8 mice. Supplementation endogenous DHA milk or exogenous DHA milk can enhance the antioxidant capacity of mice organs. Endogenous DHA milk increased the superoxide dismutase (SOD) activity of mice brain and serum than normal milk and 0.9 % saline solution (P ≤ 0.05), as well as increased SOD activity of mice liver and glutathione peroxidase (GSH-Px) activity of mice brain than normal milk (P ≤ 0.05). Exogenous DHA milk increased SOD activity of mice brain than normal milk and 0.9 % saline solution, as well as increased SOD activity of mice serum than 0.9 % saline solution (P ≤ 0.05). Several polar lipid relative content, such as 18:0/18:2 PS, 17:0 Ceramide, and 20:4 LPC in mice brain was affected by dietary supplementation with DHA-containing milk. Lipid oxidation metabolites in mice brain were not affected by DHA-containing milk. Endogenous DHA milk increased the number of platform location crossing times of mice in the Morris water maze test, compared with Exogenous DHA milk, normal milk, and 0.9 % saline solution (P ≤ 0.05).


Subject(s)
Antioxidants , Cognition , Docosahexaenoic Acids , Milk , Oxidative Stress , Superoxide Dismutase , Animals , Oxidative Stress/drug effects , Docosahexaenoic Acids/pharmacology , Cognition/drug effects , Milk/chemistry , Mice , Superoxide Dismutase/metabolism , Male , Antioxidants/metabolism , Antioxidants/pharmacology , Brain/metabolism , Brain/drug effects , Glutathione Peroxidase/metabolism , Dietary Supplements , Maze Learning/drug effects , Liver/metabolism , Liver/drug effects
19.
Nutr Metab Cardiovasc Dis ; 34(6): 1518-1527, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38508991

ABSTRACT

BACKGROUND AND AIMS: The role of serum uric acid (SUA) in the prognosis of chronic kidney disease (CKD) is inconclusive. To explore the association of SUA level with all-cause and cardiovascular disease (CVD) mortality in patients with CKD. METHODS AND RESULTS: Leveraging data from the National Health and Nutritional Examination Survey (NHANES) and linked national death records up to December 31 2019, we explored the association of SUA with all-cause and CVD mortality using weighted cox proportional hazards regression models and restricted cubic spline (RCS) models in patients with CKD stages 3-5. The study finally included 2644 patients with CKD stages 3-5, with a median SUA level of 6.5 mg/dL. After a median follow-up of 55 months, a total of 763 deaths were recorded, with 279 of them attributed to CVD. In the fully adjusted model, per 1 mg/dL increment in SUA concentration was found to be associated with increased HRs (95% CIs) of 1.07 (1.00, 1.14) for all-cause mortality and 1.11 (1.00, 1.24) for CVD mortality. Compared to Q2 (reference), those in Q4 had adjusted HRs of 1.72 (1.36, 2.17) for all-cause mortality and 2.17 (1.38, 3.41) for CVD mortality, while those in Q1 had adjusted HRs of 1.49 (1.19, 1.85) for all-cause mortality and 1.93 (1.26, 2.98) for CVD mortality. CONCLUSIONS: Both higher and lower SUA levels were associated with increased risks of all-cause and CVD mortality in patients with CKD stages 3-5.


Subject(s)
Biomarkers , Cardiovascular Diseases , Cause of Death , Hyperuricemia , Nutrition Surveys , Renal Insufficiency, Chronic , Uric Acid , Humans , Uric Acid/blood , Male , Female , Cardiovascular Diseases/mortality , Cardiovascular Diseases/blood , Cardiovascular Diseases/diagnosis , Renal Insufficiency, Chronic/mortality , Renal Insufficiency, Chronic/blood , Renal Insufficiency, Chronic/diagnosis , Middle Aged , Risk Assessment , Biomarkers/blood , Aged , Hyperuricemia/blood , Hyperuricemia/mortality , Hyperuricemia/diagnosis , Time Factors , Prognosis , United States/epidemiology , Risk Factors , Adult , Heart Disease Risk Factors
20.
Medicine (Baltimore) ; 103(12): e37362, 2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38518034

ABSTRACT

The immune environment in tumors is the key factor affecting the survival and immunotherapeutic response of patients. This research aimed to explore the underlying association between focal adhesion tyrosine kinase (FAK/PTK2) and cancer immunotherapy in 33 human cancers. Gene expression data and clinical features of 33 cancers were retrieved from the Cancer Genome Atlas Database. The immunotherapy cohorts included GSE67501, GSE78220, and IMVIGOR210, which were derived from the comprehensive gene expression database or from previous studies. Clinical parameters including patient age, gender, survival rate, and tumor stage were analyzed to evaluate the prognostic value of FAK/PTK2. FAK/PTK2 activity was detected by single-sample gene set enrichment analysis and used to compare the difference between FAK/PTK2 transcriptome and protein expression levels. To better understand the role of FAK/PTK2 in cancer immunotherapy, we analyzed its correlations with tumor microenvironment and with immune processes/elements (e.g., immune cell infiltration, immunosuppressants, and stimulants) and major histocompatible complexes. Potential pathways associated with FAK/PTK2 signaling in cancers were also explored. Correlations between FAK/PTK2 and 2 immunotherapeutic biomarkers (tumor mutation load and microsatellite instability) were studied. Finally, the 3 independent immunotherapy cohorts were used to study the relationship between FAK/PTK2 and immunotherapeutic response. Although FAK/PTK2 is not closely associated with age (13/33), gender (5/33), or tumor stage (5/33) in any of the studied human cancers, it has potential prognostic value for predicting patient survival. Consistency between FAK/PTK2 activity and expression exists in some cancers (3/33). Generally, FAK/PTK2 is robustly correlated with immune cell infiltration, immune modulators, and immunotherapeutic markers. Moreover, high FAK/PTK2 expression is significantly related to immune-relevant pathways. However, FAK/PTK2 is not significantly correlated with the immunotherapeutic response. Research on the immunotherapeutic value of FAK/PTK2 in 33 human cancers provides evidence regarding the function of FAK/PTK2 and its role in clinical treatment. However, given the use of a bioinformatics approach, our results are preliminary and require further validation.


Subject(s)
Focal Adhesions , Neoplasms , Humans , Focal Adhesion Kinase 1/genetics , Focal Adhesion Kinase 1/metabolism , Neoplasms/genetics , Neoplasms/therapy , Prognosis , Immunotherapy , Tumor Microenvironment
SELECTION OF CITATIONS
SEARCH DETAIL
...