Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 392
Filter
1.
Article in English | MEDLINE | ID: mdl-38801608

ABSTRACT

The water source reservoirs are the important urban water source in northern China. Although external pollution has been greatly improved, the internal pollutants in reservoirs continue to accumulate with the complex deposition and release processes, resulting in potential risks to water supply safety. To address the aforementioned issue, this paper proposed a simulation model of water quality named ECOlab EU1-WSR to simulate the spatio-temporal changes of water quality under the influence of internal pollution for the water source reservoirs. Based on the analysis of the water quality characteristics and the distribution of benthic vegetation in the reservoir, a three-dimensional hydrodynamic model was established based on MIKE3, the corresponding parameters and the related state variables were set, the ECOlab EU1-WSR model was established by secondly developing the original ECOlab EU1 template, and the real-time dynamic outputs of pollutant content in sediment were added to link the water quality index with sediment nutrition index for better revealing the impact of the internal pollution on the water quality. The performance of the model was evaluated by the case application on the water quality simulation of Daye reservoir and the optimization of the connection project between Daye reservoir and Xueye reservoir in Shandong Province China. The results showed that the model can accurately and simultaneously simulate the pollution in water and sediment by the comparative verification of hydrodynamics, water temperature, and water quality. Moreover, the model can effectively reflect the influence of the accumulation, deposition, and release of internal pollution on water quality by analyzing the correlation between the content of various pollution in water body and those in sediment, such as the total nitrogen and total phosphorus in the water body at the bottom of the water intake, were negatively correlated with the total nitrogen and total phosphorus in the sediments with correlation coefficients of 0.538 and 0.917, respectively. In addition, the optimal water inlet position and water flow rate of the connection project can be optimized and determined by using the model to effectively control water quality. The established model will be a useful tool for the design and management of a reservoir, the interconnection projects, and other water bodies by adaptively recoded.

2.
Child Dev ; 2024 May 14.
Article in English | MEDLINE | ID: mdl-38742715

ABSTRACT

Human brain demonstrates amazing readiness for speech and language learning at birth, but the auditory development preceding such readiness remains unknown. Cochlear implanted (CI) children (n = 67; mean age 2.77 year ± 1.31 SD; 28 females) with prelingual deafness provide a unique opportunity to study this stage. Using functional near-infrared spectroscopy, it was revealed that the brain of CI children was irresponsive to sounds at CI hearing onset. With increasing CI experiences up to 32 months, the brain demonstrated function, region and hemisphere specific development. Most strikingly, the left anterior temporal lobe showed an oscillatory trajectory, changing in opposite phases for speech and noise. The study provides the first longitudinal brain imaging evidence for early auditory development preceding speech acquisition.

3.
Opt Lett ; 49(10): 2837-2840, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38748174

ABSTRACT

Microring cavities based on whispering-gallery modes (WGMs) have a very high-quality factor (Q) and a small mode volume, greatly improving the interaction between light and matter, which has attracted great attention in microlaser, nonlinear, and sensing fields. Plasmonics in the microcavity further enhance compression of the optical field. Recently, research on enhanced optical sensing sensitivity and low threshold laser based on exceptional points (EPs) is quite impressive. In this work, we propose a new, to our knowledge, all-optical switch by using the bistable effect under the EP of an ultra-compact plasmonic racetrack resonator and perform numerical simulations using the finite-difference time-domain (FDTD) method. The introduction of EPs further enhances the localization of the light field and thus improves the Kerr nonlinear effect of the microcavity; low threshold optical bistability is achieved. The results show that the device under an EP has a relatively lower threshold (input optical power threshold of 2.2 MW/cm2), shorter switching time (1.725 ps), and significantly improved switching contrast (17.16 dB) compared with those without EP. Our research lays the groundwork for optical switches that are chip-integrated, have low power consumption, and exhibit short switching times.

4.
MedComm (2020) ; 5(5): e553, 2024 May.
Article in English | MEDLINE | ID: mdl-38737469

ABSTRACT

The generation of chimeric antigen receptor-modified natural killer (CAR-NK) cells using induced pluripotent stem cells (iPSCs) has emerged as one of the paradigms for manufacturing off-the-shelf universal immunotherapy. However, there are still some challenges in enhancing the potency, safety, and multiple actions of CAR-NK cells. Here, iPSCs were site-specifically integrated at the ribosomal DNA (rDNA) locus with interleukin 24 (IL24) and CD19-specific chimeric antigen receptor (CAR19), and successfully differentiated into iPSC-derived NK (iNK) cells, followed by expansion using magnetic beads in vitro. Compared with the CAR19-iNK cells, IL24 armored CAR19-iNK (CAR19-IL24-iNK) cells showed higher cytotoxic capacity and amplification ability in vitro and inhibited tumor progression more effectively with better survival in a B-cell acute lymphoblastic leukaemia (B-ALL) (Nalm-6 (Luc1))-bearing mouse model. Interestingly, RNA-sequencing analysis showed that IL24 may enhance iNK cell function through nuclear factor kappa B (NFκB) pathway-related genes while exerting a direct effect on tumor cells. This study proved the feasibility and potential of combining IL24 with CAR-iNK cell therapy, suggesting a novel and promising off-the-shelf immunotherapy strategy.

5.
Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi ; 38(5): 593-597, 2024 May 15.
Article in Chinese | MEDLINE | ID: mdl-38752247

ABSTRACT

Objective: To investigate the accuracy of positioning perforator of medial sural artery with three-dimensional ultrasound technique guided by a wide band linear matrix array volume transducer probe before operation, and the effectiveness of the flap design based on this in repairing the dorsal foot wounds. Methods: Between January 2019 and December 2022, 30 patients with skin and soft tissue defects of the dorsal foot were treated. There were 19 males and 11 females, with an average age of 43.9 years (range, 22-63 years). There were 12 cases of traffic accident injury, 15 cases of heavy crushing injury, and 3 cases of machine injury. The time from injury to hospitalization was 1-8 hours (mean, 3.5 hours). The wounds in size of 5 cm×3 cm to 17 cm×5 cm were thorough debrided and covered with vacuum sealing drainage dressing. Then the wounds were repaired with the medial sural artery perforator flaps after no obvious infection observed. To obtain the complete three-dimensional image, the number and position of the medial sural artery perforator branches and the position of the main blood vessels in the muscle were detected and recorded by wide band linear matrix array volume transducer probe before operation. Suitable perforating branches were selected to design the flap and guide the flap incision on this basis. The size of the perforating flap ranged from 6 cm×4 cm to 18 cm×6 cm. The sensitivity and positive predictive value were calculated by comparing preoperative exploration with intraoperative observation of perforating branches, so as to evaluate the positioning accuracy of three-dimensional ultrasound technique. The donor sites were sutured directly in 25 cases and repaired with free skin grafting in 5 cases. Results: The 60 perforating branches of medial sural artery were found before operation and 58 during operation in 30 patients. Among them, pre- and intra-operative perforations were consistent with 56. The sensitivity was 93.3% and positive predictive value was 96.6%. The intramuscular position and route of the main blood vessels were basically consistent with the pre- and intra-operative observation. All flaps survived and wounds healed by first intention. All incisions at the donor sites healed by first intention, and all skin grafts survived. All patients were follow up 9-24 months (mean, 14.7 months). The appearance, color, and texture of the flaps were good, and no obvious effect on wearing shoes and walking. At last follow-up, the American Orthopaedic Foot and Ankle Society (AOFAS) ankle-hind score ranged from 80 to 92, with an average of 87.5. The patient satisfaction was excellent in 29 cases and good in 1 case. Conclusion: The three-dimensional ultrasound technique guided by the wide band linear matrix array volume transducer probe can accurately locate the perforating branch of the medial sural artery, and the three-dimensional imaging is more intuitive, which can be used to guide the design and incision of the medial sural artery perforator flap.


Subject(s)
Foot Injuries , Imaging, Three-Dimensional , Perforator Flap , Soft Tissue Injuries , Ultrasonography , Humans , Male , Adult , Female , Perforator Flap/blood supply , Middle Aged , Foot Injuries/surgery , Ultrasonography/methods , Soft Tissue Injuries/surgery , Soft Tissue Injuries/diagnostic imaging , Young Adult , Plastic Surgery Procedures/methods , Fibula/blood supply , Arteries , Wound Healing , Skin Transplantation/methods
6.
Fish Shellfish Immunol ; 149: 109606, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38705547

ABSTRACT

Moritella viscosa (M. viscosa) and sea lice (Lepeophtheirus salmonis) are severe pathogens that primarily infect the skin of Atlantic salmon (Salmo salar), which cause significant economic losses in the farming industry. However, the pathogenesis and molecular mechanisms underlying the host's immune defence at the post-transcriptional level remain unclear. Alternative splicing (AS) is an evolutionarily conserved post-transcriptional mechanism that can greatly increase the richness of the transcriptome and proteome. In this study, transcriptomic data derived from skin tissues of Atlantic salmon after M. viscosa and sea lice infections were used to examine the AS profiles and their differential expression patterns. In total, we identified 33,044 AS events (involving 13,718 genes) in the control (CON) group, 35,147 AS events (involving 14,340 genes) in the M. viscosa infection (MV) group, and 30,364 AS events (involving 13,142 genes) in the sea lice infection (LC) group, respectively. Among the five types of AS identified in our study (i.e., SE, A5SS, A3SS, MXE, and RI), SE was the most prevalent type in all three groups (i.e., CON, MV, and LC groups). Decreased percent-spliced-in (PSI) levels were observed in SE events under both MV- and LC-infected conditions, suggesting that MV or LC infection elevated exon-skipping isoforms and promoted the selection of shorter transcripts in numerous DAS genes. In addition, most of the differential AS genes were found to be associated with pathways related to mRNA regulation, epithelial or muscle development, and immune response. These findings provide novel insights into the role of AS in host-pathogen interactions and represent the first comparative analysis of AS in response to bacterial and parasitic infections in fish.


Subject(s)
Alternative Splicing , Copepoda , Fish Diseases , Moritella , Salmo salar , Animals , Salmo salar/immunology , Salmo salar/genetics , Copepoda/physiology , Fish Diseases/immunology , Moritella/immunology , Moritella/genetics , Transcriptome , Ectoparasitic Infestations/veterinary , Ectoparasitic Infestations/immunology , Ectoparasitic Infestations/genetics
7.
Database (Oxford) ; 20242024 May 28.
Article in English | MEDLINE | ID: mdl-38805752

ABSTRACT

Mechanical aspects of tissues and cells critically influence a myriad of biological processes and can substantially alter the course of diverse diseases. The emergence of diverse methodologies adapted from physical science now permits the precise quantification of the cellular forces and the mechanical properties of tissues and cells. Despite the rising interest in tissue and cellular mechanics across fields like biology, bioengineering and medicine, there remains a noticeable absence of a comprehensive and readily accessible repository of this pertinent information. To fill this gap, we present MechanoBase, a comprehensive tissue and cellular mechanics database, curating 57 480 records from 5634 PubMed articles. The records archived in MechanoBase encompass a range of mechanical properties and forces, such as modulus and tractions, which have been measured utilizing various technical approaches. These measurements span hundreds of biosamples across more than 400 species studied under diverse conditions. Aiming for broad applicability, we design MechanoBase with user-friendly search, browsing and data download features, making it a versatile tool for exploring biomechanical attributes in various biological contexts. Moreover, we add complementary resources, including the principles of popular techniques, the concepts of mechanobiology terms and the cellular and tissue-level expression of related genes, offering scientists unprecedented access to a wealth of knowledge in this field of research. Database URL: https://zhanglab-web.tongji.edu.cn/mechanobase/ and https://compbio-zhanglab.org/mechanobase/.


Subject(s)
Databases, Factual , Humans , Biomechanical Phenomena , Animals
8.
Sensors (Basel) ; 24(9)2024 May 02.
Article in English | MEDLINE | ID: mdl-38733023

ABSTRACT

Wireless power transfer (WPT) technology is a contactless wireless energy transfer method with wide-ranging applications in fields such as smart homes, the Internet of Things (IoT), and electric vehicles. Achieving optimal efficiency in wireless power transfer systems has been a key research focus. In this paper, we propose a tracking method based on full current mode impedance matching for optimizing wireless power transfer efficiency. This method enables efficiency tracking in WPT systems and seamless switching between continuous conduction mode and discontinuous mode, expanding the detection capabilities of the wireless power transfer system. MATLAB was used to simulate the proposed method and validate its feasibility and effectiveness. Based on the simulation results, the proposed method ensures optimal efficiency tracking in wireless power transfer systems while extending detection capabilities, offering practical value and potential for widespread applications.

9.
Comput Biol Med ; 176: 108531, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38728991

ABSTRACT

The prediction of thermodynamic properties of carbon-based molecules based on their geometrical conformation using fluctuation and density functional theories has achieved great success in the field of energy chemistry, while the excessive computational cost provides both opportunities and challenges for the integration of machine learning. In this work, a deep learning-based quantum chemical prediction model was constructed for efficient prediction of thermodynamic properties of carbon-based molecules. We constructed a novel framework - encoding the 3D information into a large language model (LLM), which in turn generates a 2D SMILES string, while embedding a learnable encoding designed to preserve the integrity of the original 3D information, providing better structural information for the model. Additionally, we have designed an equivariant learning module to encompass representations of conformations and feature learning for conformational sampling. This framework aims to predict thermodynamic properties more accurately than learning from 2D topology alone, while providing faster computational speeds than conventional simulations. By combining machine learning and quantum chemistry, we pioneer efficient practical applications in the field of energy chemistry. Our model advances the integration of data-driven and physics-based modeling to unlock novel insights into carbon-based molecules.


Subject(s)
Carbon , Deep Learning , Carbon/chemistry , Quantum Theory , Models, Chemical , Thermodynamics
10.
Water Res ; 257: 121654, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38701552

ABSTRACT

Volatile fatty acids (VFAs) derived from arrested anaerobic digestion (AD) can be recovered as a valuable commodity for value-added synthesis. However, separating VFAs from digestate with complex constituents and a high-water content is an energy-prohibitive process. This study developed an innovative technology to overcome this barrier by integrating deep eutectic solvents (DESs) with an omniphobic membrane into a membrane contactor for efficient extraction of anhydrous VFAs with low energy consumption. A kinetic model was developed to elucidate the mechanistic differences between this novel omniphobic membrane-enabled DES extraction and the previous hydrophobic membrane-enabled NaOH extraction. Experimental results and mechanistic modeling suggested that VFA extraction by the DES is a reversible adsorption process facilitating subsequent VFA separation via anhydrous distillation. High vapor pressure of shorter-chain VFAs and low Nernst distribution coefficients of longer-chain VFAs contributed to DES-driven extraction, which could enable continuous and in-situ recovery and conversion of VFAs from AD streams.


Subject(s)
Fatty Acids, Volatile , Hydrophobic and Hydrophilic Interactions , Membranes, Artificial , Deep Eutectic Solvents/chemistry , Solvents/chemistry , Kinetics , Anaerobiosis
11.
Orthop Surg ; 16(6): 1487-1492, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38726583

ABSTRACT

The accurate fenestration, screw implantation and assisting stabilizing-plate placement in surgery of benign tumors in the proximal femur needs be defined easily. The aim of this study was to investigate the value of 3D printed multifunctional guides plate (3D-MGP) based on computer aided design. Between January 2020 and June 2022, 17 patients (nine females and eight males) with benign proximal femoral tumor had lesion curettage and allograft combined with internal plate fixation using 3D-MGP. In this study, the patients had CT scans and a technician reconstructed the 3D images of tumor and the femur, a doctor designed the location and margin of the fenestration and screws, and integrated different functions into MGP for benign proximal femoral lesions, which assisted in precise localization, fenestration and screw drilling. Musculoskeletal Tumor Society (MSTS) scoring was used to evaluate lower extremity function. Bone healing and the screws location was assessed with the radiographs. All patients underwent successful surgery with complete resection of the tumor and internal fixation with using the 3D-MGP. The mean follow-up was 16.4 months. The operative time was 126.47 ± 18.44 min, intraoperative bleeding was 198.23 ± 67.94 mL, intraoperative fluoroscopy was 6.47 ± 0.62, postoperative drainage was 223.82 ± 119.51 mL, and MSTS score was 27.29 ± 1.31 points. There were no unplanned fenestration and improper screw fixation. The 3D-MGP enabled personalized and accurate location of tumor, fenestration, screw placement and assisted stabilizing-plate placement for the treatment of benign tumor of the proximal femur. This technique has the potential to shorten operative times, decrease intraoperative bleeding, and reduce radiation exposure to patients.


Subject(s)
Bone Plates , Bone Screws , Femoral Neoplasms , Printing, Three-Dimensional , Humans , Female , Male , Adult , Middle Aged , Femoral Neoplasms/surgery , Femoral Neoplasms/diagnostic imaging , Young Adult , Computer-Aided Design , Adolescent
12.
Aging Cell ; : e14210, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38783692

ABSTRACT

The nucleus pulposus is in a hypoxic environment in the human body, and when intervertebral disc degeneration (IVDD) occurs, the hypoxic environment is disrupted. Nucleus pulposus cell (NPC) ferroptosis is one of the causes of IVDD. N6-methyladenosine (m6A) and its reader protein YTHDF1 regulate cellular activities by affecting RNA metabolism. However, the regulation of ferroptosis in NPCs by m6A-modified RNAs under hypoxic conditions has not been as well studied. In this study, through in vitro and in vivo experiments, we explored the underlying mechanism of HIF-1α and YTHDF1 in regulating ferroptosis in NPCs. The results indicated that the overexpression of HIF-1α or YTHDF1 suppressed NPC ferroptosis; conversely, the knockdown of HIF-1α or YTHDF1 increased ferroptosis levels in NPCs. Luciferase reporter assays and chromatin immunoprecipitation demonstrated that HIF-1α regulated YTHDF1 transcription by directly binding to its promoter region. Polysome profiling results showed that YTHDF1 promoted the translation of SLC7A11 and consequently the expression of the anti-ferroptosis protein GPX4 by binding to m6A-modified SLC7A11 mRNA. In conclusion, HIF-1α-induced YTHDF1 expression reduces NPC ferroptosis and delays IVDD by promoting SLC7A11 translation in a m6A-dependent manner.

13.
Analyst ; 2024 May 13.
Article in English | MEDLINE | ID: mdl-38738630

ABSTRACT

Numerous studies have revealed a close correlation between the levels of apolipoproteins (Apos) (including lipoprotein(a) [Lp(a)]) and an increased risk of cardiovascular disease in recent decades. However, clinically, lipid profiling remains limited to the conventional plasma levels of cholesterol, triglyceride, ApoA1, and ApoB, which brings the necessity to quantify more apolipoproteins in human plasma. In this study, we simultaneously quantified 13 apolipoproteins and Lp(a) in 5 µL of human plasma using the LC-MS/MS platform. A method was developed for the precise detection of Lp(a), ApoA1, A2, A5, B, C1, C2, C3, D, E, H, L1, M, and J. Suitable peptides were selected and optimized to achieve clear separation of each peak. Method validation consisting of linearity, sensitivity, accuracy and precision, recovery, and matrix effects was evaluated. The intra-day CV ranged from 0.58% to 14.2% and the inter-day CV ranged from 0.51% to 13.3%. The recovery rates ranged from 89.8% to 113.7%, while matrix effects ranged from 85.4% to 113.9% for all apolipoproteins and Lp(a). Stability tests demonstrated that these apolipoproteins remained stable for 3 days at 4 °C and 7 days at -20 °C. This validated method was successfully applied to human plasma samples obtained from 45 volunteers. The quantitative results of ApoA1, ApoB, and Lp(a) exhibited a close correlation with the results from the immunity transmission turbidity assay. Collectively, we developed a robust assay that can be used for high-throughput quantification of apolipoproteins and Lp(a) simultaneously for investigating related risk factors in patients with dyslipidemia.

14.
Article in English | MEDLINE | ID: mdl-38591772

ABSTRACT

Two yeast strains, designated as 19-39-3 and 19-40-2, obtained from the fruiting bodies of Trametes versicolor and Marasmius siccus collected in Yunwu Mountain Forest Park, PR China, have been identified as representing a novel asexual ascomycetous yeast species. From the results of phylogenetic analyses of the sequences of the D1/D2 domains of the large subunit (LSU) rRNA, small subunit (SSU) rRNA and translation elongation factor 1-α (TEF1) genes, it was determined that these strains represent a member of the genus Wickerhamomyces, with Wickerhamomyces alni and Candida ulmi as the closest relatives. The novel species exhibited 6.6 and 6.7% differences in the D1/D2 domains compared with W. alni and C. ulmi, respectively. Additionally, distinct biochemical and physiological differences were observed between the novel species and its related counterparts. No sexual reproduction was observed in these strains, leading to the proposal of the name Wickerhamomyces corioli f.a., sp. nov. for this newly discovered species.


Subject(s)
Agaricales , Saccharomycetales , Phylogeny , DNA, Ribosomal Spacer/genetics , Agaricales/genetics , Trametes/genetics , Sequence Analysis, DNA , Base Composition , RNA, Ribosomal, 16S/genetics , DNA, Bacterial/genetics , Bacterial Typing Techniques , Fatty Acids/chemistry , Saccharomycetales/genetics , DNA, Fungal/genetics , Mycological Typing Techniques
15.
ACS Omega ; 9(16): 18576-18583, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38680347

ABSTRACT

Paraquat (PQ) poisoning poses a significant public health concern. Unfortunately, point-of-care testing (POCT) of PQ in biofluids remains challenging. This study developed a portable kit that enables swift and reliable identification and quantification of PQ in human urine and gastric juice. The approach employed the surface-enhanced Raman scattering (SERS) technique, leveraging gold-silver core-shell nanoparticles (Au@Ag NPs) as the substrate. The kit comprised a portable Raman spectrometer and three sealed tubes containing Au@Ag NPs colloid, KI solution, and MgSO4 solution. A discernible correlation was observed between signal intensity and the logarithmic concentration, spanning from 5 to 500 µg/L in urine and 10 µg/L to 1 mg/L in gastric juice. The detection limits, calculated from the characteristic peak at 1648 cm -1, were 1.36 and 4.05 µg/L in human urine and gastric juice, respectively. Notably, this POCT kit obviated the need for pretreatment procedures, and the detection process was accomplished within 1 min, yielding satisfactory recoveries. This expeditious time frame is crucial for clinical diagnosis and rescue operations. Compared to conventional methods, this kit demonstrated real-time determinations in nonlaboratory settings. The simplicity and practicality of this POCT assay suggest its significant potential as an innovative alternative for poisoning detection applications.

16.
Small Methods ; : e2400178, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38686689

ABSTRACT

Reversible solid oxide cells (rSOCs) have significant potential as efficient energy conversion and storage systems. Nevertheless, the practical application of their conventional air electrodes, such as La0.8Sr0.2MnO3-δ (LSM), Ba0.5Sr0.5Co0.8Fe0.2O3-δ (BSCF), and PrBa0.8Ca0.2Co2O5+δ (PBCC), remains unsatisfactory due to interface delamination during prolonged electrochemical operation. Using micro-focusing X-ray absorption spectroscopy (µ-XAS), a decrease (increase) in the co-valence state from the electrode surface to the electrode/electrolyte interface is observed, leading to the above delamination. Utilizing the one-pot method to incorporate an oxygen-vacancy-enriched CeO2 electrode into these air electrodes, the uniform distribution of the Co valence state is observed, alleviating the structural delamination. PBCC-CeO2 electrodes exhibited a degradation rate of 0.095 mV h-1 at 650 °C during a nearly 500-h test as compared with 0.907 mV h-1 observed during the 135-h test for PBCC. Additionally, a remarkable increase in electrolysis current density from 636 to 934 mA cm-2 under 1.3 V and a maximum power density from 912 to 989 mW cm-2 upon incorporating CeO2 into PBCC is also observed. BSCF-CeO2 and LSM-CeO2 also show enhanced electrochemical performance and prolonged stability as compared to BSCF and LSM. This work offers a strategy to mitigate the structural delamination of conventional electrodes to boost the performance of rSOCs.

17.
Dalton Trans ; 53(17): 7292-7302, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38587489

ABSTRACT

Hybrid methylammonium (MA) lead halide perovskites have emerged as materials exhibiting excellent photovoltaic performance related to their rich structural and dynamic properties. Here, we use multifrequency (X-, Q-, and W-band) electron paramagnetic resonance (EPR) spectroscopy of Mn2+ impurities in MAPbCl3 to probe the structural and dynamic properties of both the organic and inorganic sublattices of this compound. The temperature dependent continuous-wave (CW) EPR experiments reveal a sudden change of the Mn2+ spin Hamiltonian parameters at the phase transition to the ordered orthorhombic phase indicating its first-order character and significant slowing down of the MA cation reorientation. Pulsed EPR experiments are employed to measure the temperature dependences of the spin-lattice relaxation T1 and decoherence T2 times of the Mn2+ ions in the orthorhombic phase of MAPbCl3 revealing a coupling between the spin center and vibrations of the inorganic framework. Low-temperature electron spin echo envelope modulation (ESEEM) experiments of the protonated and deuterated MAPbCl3 analogues show the presence of quantum rotational tunneling of the ammonium groups, allowing to accurately probe their rotational energy landscape.

19.
Front Pharmacol ; 15: 1364286, 2024.
Article in English | MEDLINE | ID: mdl-38655182

ABSTRACT

Objective: This experiment aimed to obtain the relatively rare cis-crocetin isomer from natural plants, which predominantly exist in the more stable all-trans configuration. This was achieved through iodine-induced isomerization, followed by purification and structural identification. The study also aimed to compare the pharmacokinetic differences between cis- and trans-crocetin in vivo. Methods: Trans-crocetin of high purity was extracted by hydrolysis from gardenia yellow pigment. Cis-crocetin was then synthesized through an optimized electrophilic addition reaction induced by elemental iodine, and subsequently separated and purified via silica gel column chromatography. Structural identification of cis-crocetin was determined using IR, UV, and NMR techniques. In vivo pharmacokinetic studies were conducted for both cis- and trans-crocetin. In addition to this, we have conducted a comparative study on the in vivo anti-hypoxic activity of trans- and cis-crocetin. Results: Under the selected reaction conditions using DMF as the solvent, with a concentration of 2.5 mg/mL for both trans-crocetin and the iodine solution, and adjusting the illumination time according to the amount of trans-crocetin, the rate of iodine-induced isomerization was the fastest. Cis-crocetin was successfully obtained and, after purification, its structure was identified and found to be consistent with reported data. Cis-crocetin exhibited a faster absorption rate and higher bioavailability, and despite its shorter half-life, it could partially convert to trans-crocetin in the body, thereby extending the duration of the drug's action within the body to some extent. Conclusion: This study accomplished the successful preparation and structural identification of cis-crocetin. Additionally, through pharmacokinetic studies, it uncovered notable variations in bioavailability between cis- and trans-crocetin. These findings serve as a solid scientific foundation for future functional research and practical applications in this field.

20.
J Phys Chem B ; 128(12): 2885-2896, 2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38488148

ABSTRACT

Polydopamine (pDA) is a valuable material with wide-ranging potential applications. However, the complex and debated nature of dopamine polymerization complicates our understanding. Specifically, the impact of foreign substances, especially proteins, on pDA formation adds an additional layer of subtlety and complexity. This study delves into specific surface features of proteins that predominantly shape their impact on dopamine polymerization. Notably, the biotin-binding site emerges as a critical region responsible for the pronounced inhibitory effect of avidin and neutravidin on the dopamine polymerization process. The binding of biotin successfully mitigates these inhibitory effects. Moreover, several nucleases demonstrated a significant hindrance to pDA formation, with their impact substantially alleviated through the introduction of DNA. It is speculated that hydrogen bonding, electrostatic, cation-π, and/or hydrophobic interactions may underlie the binding between protein surfaces and diverse oligomeric intermediates formed by the oxidation products of dopamine. Additionally, we observed a noteworthy blocking effect on the dopamine polymerization reaction induced by erythropoietin (EPO), a glycoprotein hormone known for its role in stimulating red blood cell production and demonstrating neuroprotective effects. The inhibitory influence of EPO persisted even after deglycosylation. These findings not only advance our comprehension of the mechanisms underlying dopamine polymerization but also provide strategic insights for manipulating the reaction to tailor desired biomaterials.


Subject(s)
Biotin , Dopamine , Dopamine/chemistry , Polymerization , Biocompatible Materials
SELECTION OF CITATIONS
SEARCH DETAIL
...