Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 72
Filter
1.
Curr Biol ; 2024 May 21.
Article in English | MEDLINE | ID: mdl-38810638

ABSTRACT

An epidemic of sleep loss currently affects modern societies worldwide and is implicated in numerous physiological disorders, including pain sensitization, although few studies have explored the brain pathways affected by active sleep deprivation (ASD; e.g., due to recreation). Here, we describe a neural circuit responsible for pain sensitization in mice treated with 9-h non-stress ASD. Using a combination of advanced neuroscience methods, we found that ASD stimulates noradrenergic inputs from locus coeruleus (LCNA) to glutamatergic neurons of the hindlimb primary somatosensory cortex (S1HLGlu). Moreover, artificial inhibition of this LCNA→S1HLGlu pathway alleviates ASD-induced pain sensitization in mice, while chemogenetic activation of this pathway recapitulates the pain sensitization observed following ASD. Our study thus implicates activation of the LCNA→S1HLGlu pathway in ASD-induced pain sensitization, expanding our fundamental understanding of the multisystem interplay involved in pain processing.

2.
Sci Rep ; 14(1): 12431, 2024 05 30.
Article in English | MEDLINE | ID: mdl-38816406

ABSTRACT

Pulmonary arterial hypertension (PAH) is a fatal disease featured by high morbidity and mortality. Although Cordycepin is known for its anti-inflammatory, antioxidant and immune-enhancing effects, its role in PAH treatment and the underlying mechanisms remain unclear. The therapeutic effects of Cordycepin on rats with PAH were investigated using a monocrotaline (MCT)-induced rat model. The metabolic effects of Cordycepin were assessed based on the plasma metabolome. The potential mechanisms of Cordycepin in PAH treatment were investigated through transcriptome sequencing and validated in pulmonary artery smooth muscle cells (PASMC). Evaluations included hematoxylin and eosin staining for pulmonary vascular remodeling, CCK-8 assay, EDU, and TUNEL kits for cell viability, proliferation, and apoptosis, respectively, and western blot for protein expression. Cordycepin significantly reduced right ventricular systolic pressure (RVSP) and right ventricular hypertrophy index (RVHI) in PAH rats, and mitigated pulmonary vascular remodeling. Plasma metabolomics showed that Cordycepin could reverse the metabolic disorders in the lungs of MCT-induced PAH rats, particularly impacting linoleic acid and alpha-linolenic acid metabolism pathways. Transcriptomics revealed that the P53 pathway might be the primary pathway involved, and western blot results showed that Cordycepin significantly increased P53 and P21 protein levels in lung tissues. Integrated analysis of transcriptomics and metabolomics suggested that these pathways were mainly enriched in linoleic acid metabolism and alpha-linolenic acid metabolism pathway. In vitro experiments demonstrated that Cordycepin significantly inhibited the PDGFBB (PD)-induced abnormal proliferation and migration of PASMC and promoted PD-induced apoptosis. Meanwhile, Cordycepin enhanced the expression levels of P53 and P21 proteins in PD-insulted PASMC. However, inhibitors of P53 and P21 eliminated these effects of Cordycepin. Cordycepin may activate the P53-P21 pathway to inhibit abnormal proliferation and migration of PASMC and promote apoptosis, offering a potential approach for PAH treatment.


Subject(s)
Apoptosis , Cell Proliferation , Deoxyadenosines , Pulmonary Arterial Hypertension , Animals , Deoxyadenosines/pharmacology , Deoxyadenosines/therapeutic use , Rats , Male , Apoptosis/drug effects , Pulmonary Arterial Hypertension/drug therapy , Pulmonary Arterial Hypertension/metabolism , Pulmonary Arterial Hypertension/pathology , Cell Proliferation/drug effects , Transcriptome/drug effects , Metabolomics , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/drug effects , Monocrotaline , Pulmonary Artery/drug effects , Pulmonary Artery/metabolism , Pulmonary Artery/pathology , Rats, Sprague-Dawley , Disease Models, Animal , Vascular Remodeling/drug effects , Tumor Suppressor Protein p53/metabolism , Tumor Suppressor Protein p53/genetics , Linoleic Acid/pharmacology , Hypertrophy, Right Ventricular/drug therapy , Hypertrophy, Right Ventricular/metabolism , Gene Expression Profiling
3.
Biomed Pharmacother ; 175: 116571, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38677248

ABSTRACT

Diabetes can lead to a disorder of bone-fat balance, a significant cause of osteoporosis due to changes in environmental factors. Baicalin (Bai), an active ingredient of Scutellaria baicalensis, has been confirmed to possess antioxidant, hypoglycemic, and anti-osteoporotic effects. However, a comprehensive understanding of Bai's influence on diabetic osteoporosis (DOP), including its effects and underlying mechanisms, remains elusive. This study investigated Bai's impact on the bone-fat equilibrium in rats with DOP. The results indicated that Bai alleviated bone damage in DOP by promoting osteogenesis and inhibiting adipogenesis. Concurrently, through bioinformatics analysis, it was suggested that Bai's mechanism of action might involve the P38-MAPK pathway. In vitro, Bai was found to enhance the development of bone marrow mesenchymal stem cells (BMSCs) towards osteogenic lineages while suppressing their differentiation towards adipogenic lineages. It was discovered that Bai's promotion of BMSC osteogenic differentiation depends on the P38-MAPK pathway. Additionally, the synergistic effect mediated by Bai and P38-MAPK inhibitor suppressed BMSC adipogenic differentiation. Our research indicates that the P38-MAPK pathway play a role in Bai's effects on the osteogenic-adipogenic differentiation of BMSCs, showcasing the potential for DOP treatment. This study highlights Bai's ability to regulate the equilibrium between bone and fat, presenting a novel approach to adressing DOP.


Subject(s)
Adipogenesis , Cell Differentiation , Flavonoids , Mesenchymal Stem Cells , Osteogenesis , Osteoporosis , Rats, Sprague-Dawley , p38 Mitogen-Activated Protein Kinases , Animals , Flavonoids/pharmacology , Flavonoids/therapeutic use , p38 Mitogen-Activated Protein Kinases/metabolism , Osteoporosis/drug therapy , Mesenchymal Stem Cells/drug effects , Mesenchymal Stem Cells/metabolism , Osteogenesis/drug effects , Adipogenesis/drug effects , Male , Rats , Cell Differentiation/drug effects , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/complications , MAP Kinase Signaling System/drug effects , Bone and Bones/drug effects , Bone and Bones/metabolism , Bone and Bones/pathology , Cells, Cultured
4.
J Phys Chem Lett ; 15(15): 4218-4223, 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38602298

ABSTRACT

Two-dimensional (2D) ferroelectric metals (FEMs) possess intriguing characteristics, such as unconventional superconductivity and the nonlinear anomalous Hall effect. However, their occurrence is exceedingly rare due to mutual repulsion between ferroelectricity and metallicity. In addition, further incorporating other features like ferromagnetism into FEMs to enhance their functionalities poses a significantly greater challenge. Here, via first-principles calculations, we demonstrate a case of an FEM that features a coexistence of room-temperature ferromagnetism, ferroelectricity, and metallicity in a thermodynamically stable 2D Os2Se3. It presents a vertical electric polarization of 3.00 pC/m that exceeds those of most FEMs and a moderate polarization switching barrier of 0.22 eV per formula unit. Moreover, 2D Os2Se3 exhibits robust ferromagnetism (Curie temperature TC ≈ 527 K) and a sizable magnetic anisotropy energy (-30.87 meV per formula unit). Furthermore, highly magnetization-dependent electrical conductivity is revealed, indicative of strong magnetoelectric coupling. Berry curvature calculation suggests that the FEM might exhibit nontrivial band topology.

5.
J Ethnopharmacol ; 327: 118011, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38467320

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Rujifang (RJF) constitutes a traditional Chinese medicinal compound extensively employed in the management of triple-negative breast cancer (TNBC). However, information regarding its potential active ingredients, antitumor effects, safety, and mechanism of action remains unreported. AIM OF THE STUDY: To investigate the efficacy and safety of RJF in the context of TNBC. MATERIALS AND METHODS: We employed the ultra high-performance liquid chromatography-electrospray four-pole time-of-flight mass spectrometry technique (UPLC/Q-TOF-MS/MS) to scrutinize the chemical constituents of RJF. Subcutaneously transplanted tumor models were utilized to assess the impact of RJF on TNBC in vivo. Thirty female BLAB/c mice were randomly divided into five groups: the model group, cyclophosphamide group, and RJF high-dose, medium-dose, and low-dose groups. A total of 1 × 106 4T1 cells were subcutaneously injected into the right shoulder of mice, and they were administered treatments for a span of 28 days. We conducted evaluations on blood parameters, encompassing white blood cell count (WBC), red blood cell count (RBC), hemoglobin (HGB), platelet count (PLT), neutrophils, lymphocytes, and monocytes, as well as hepatorenal indicators including alkaline phosphatase (ALP), glutamate oxaloacetate transaminase (GOT), glutamate pyruvate transaminase (GPT), albumin, and creatinine (CRE) to gauge the safety of RJF. Ki67 and TUNEL were detected via immunohistochemistry and immunofluorescence, respectively. We prepared RJF drug-containing serum for TNBC cell lines and assessed the in vitro inhibitory effect of RJF on tumor cell growth through the CCK8 assay and cell cycle analysis. RT-PCR was employed to detect the mRNA expression of cyclin-dependent kinase and cyclin-dependent kinase inhibitors in tumor tissues, and Western blot was carried out to ascertain the expression of cyclin and pathway-related proteins. RESULTS: 100 compounds were identified in RJF, which consisted of 3 flavonoids, 24 glycosides, 18 alkaloids, 3 amino acids, 8 phenylpropanoids, 6 terpenes, 20 organic acids, and 18 other compounds. In animal experiments, both CTX and RJF exhibited substantial antitumor effects. RJF led to an increase in the number of neutrophils in peripheral blood, with no significant impact on other hematological indices. In contrast, CTX reduced red blood cell count, hemoglobin levels, and white blood cell count, while increasing platelet count. RJF exhibited no discernible influence on hepatorenal function, whereas Cyclophosphamide (CTX) decreased ALP, GOT, and GPT levels. Both CTX and RJF reduced the expression of Ki67 and heightened the occurrence of apoptosis in tumor tissue. RJF drug-containing serum hindered the viability of 4T1 and MD-MBA-231 cells in a time and concentration-dependent manner. In cell cycle experiments, RJF diminished the proportion of G2 phase cells and arrested the cell cycle at the S phase. RT-PCR analysis indicated that RJF down-regulated the mRNA expression of CDK2 and CDK4, while up-regulating that of P21 and P27 in tumor tissue. The trends in CDKs and CDKIs protein expression mirrored those of mRNA expression. Moreover, the PI3K/AKT pathway displayed downregulation in the tumor tissue of mice treated with RJF. CONCLUSION: RJF demonstrates effectiveness and safety in the context of TNBC. It exerts anti-tumor effects by arresting the cell cycle at the S phase through the PI3K-AKT pathway.


Subject(s)
Signal Transduction , Triple Negative Breast Neoplasms , Humans , Female , Animals , Mice , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Triple Negative Breast Neoplasms/pathology , Ki-67 Antigen/metabolism , Tandem Mass Spectrometry , Cell Line, Tumor , Cell Proliferation , Apoptosis , Cyclin-Dependent Kinases/metabolism , Cyclin-Dependent Kinases/pharmacology , Cyclin-Dependent Kinases/therapeutic use , Cyclophosphamide/pharmacology , Hemoglobins/pharmacology , Hemoglobins/therapeutic use , Transaminases , Glutamates/pharmacology , Glutamates/therapeutic use , RNA, Messenger
6.
ACS Nano ; 18(11): 8157-8167, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38456777

ABSTRACT

Perovskite light-emitting diodes (PeLEDs) are the next promising display technologies because of their high color purity and wide color gamut, while two classical emitter forms, i.e., polycrystalline domains and quantum dots, are encountering bottlenecks. Weak carrier confinement of large polycrystalline domains leads to inadequate radiative recombination, and surface ligands on quantum dots are the main annihilation sites for injected carriers. Here, pinpointing these issues, we screened out an amphoteric agent, namely, 2-(2-aminobenzoyl)benzoic acid (2-BA), to precisely control the in situ growth of FAPbI3 (FA: formamidine) nanodomains with enhanced space confinement, preferred crystal orientation, and passivated trap states on the transport-layer substrate. The amphoteric 2-BA performs bidentate chelating functions on the formation of ultrasmall perovskite colloids (<1 nm) in the precursor, resulting in a smoother FAPbI3 emitting layer. Based on monodispersed and homogeneous nanodomain films, a near-infrared PeLED device with a champion efficiency of >22% plus enhanced T80 operational stability was achieved. The proposed perovskite nanodomain film tends to be a mainstream emitter toward the performance breakthrough of PeLED devices covering visible wavelengths beyond infrared.

7.
Br J Anaesth ; 132(4): 735-745, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38336518

ABSTRACT

BACKGROUND: Cigarette smoking is commonly reported among chronic pain patients in the clinic. Although chronic nicotine exposure is directly linked to nociceptive hypersensitivity in rodents, underlying neurobiological mechanisms remain unknown. METHODS: Multi-tetrode recordings in freely moving mice were used to test the activity of dopaminergic projections from the ventral tegmental area (VTA) to pyramidal neurones in the anterior cingulate cortex (ACC) in chronic nicotine-treated mice. The VTA→ACC dopaminergic pathway was inhibited by optogenetic manipulation to detect chronic nicotine-induced allodynia (pain attributable to a stimulus that does not normally provoke pain) assessed by von Frey monofilaments (force units in g). RESULTS: Allodynia developed concurrently with chronic (28-day) nicotine exposure in mice (0.36 g [0.0141] vs 0.05 g [0.0018], P<0.0001). Chronic nicotine activated dopaminergic projections from the VTA to pyramidal neurones in the ACC, and optogenetic inhibition of VTA dopaminergic terminals in the ACC alleviated chronic nicotine-induced allodynia in mice (0.06 g [0.0064] vs 0.28 g [0.0428], P<0.0001). Moreover, optogenetic inhibition of Drd2 dopamine receptor signalling in the ACC attenuated nicotine-induced allodynia (0.07 g [0.0082] vs 0.27 g [0.0211], P<0.0001). CONCLUSIONS: These findings implicate a role of Drd2-mediated dopaminergic VTA→ACC pathway signalling in chronic nicotine-elicited allodynia.


Subject(s)
Gyrus Cinguli , Nicotine , Humans , Mice , Animals , Nicotine/pharmacology , Hyperalgesia/chemically induced , Dopamine/metabolism , Pain
9.
Article in English | MEDLINE | ID: mdl-38299286

ABSTRACT

BACKGROUND: Pulmonary Arterial Hypertension (PAH) is a fatal disease with high morbidity and mortality. Cordycepin has anti-inflammatory, antioxidant and immune enhancing effects. However, the role of Cordycepin in the treatment of PAH and its mechanism is not clear. METHODS: The Cordycepin structure and PAH-related gene targets were obtained from public databases. The KEGG and GO enrichment analysis of common targets was performed in DAVID. PPI networks were also mapped using the STRING platform. AutoDock Vina, AutoDockTools, ChemBio3D and Pymol tools were selected for molecular docking of key targets. The therapeutic effects of Cordycepin on PAH were observed in Monocrotaline(MCT)-induced PAH rats and platelet-derived growth factor BB (PDGFBB)-induced rat pulmonary artery smooth muscle cells (PASMCs). The right ventricular systolic pressure (RVSP) was detected. HE staining, Western Blot, Scratch assay, EDU and TUNEL assays were used respectively. RESULTS: Through Network Pharmacology and molecular docking , the Cordycepin-PAH core genes were found to be TP53, AKT1, CASP3, BAX and BCL2L1. In MCT-induced PAH rats, the administration of Cordycepin significantly reduced RVSP, and inhibited pulmonary vascular remodeling. In PDGFBB-induced PASMCs, Cordycepin reduced the migration and proliferation of PASMCs and promoted apoptosis. After the Cordycepin treatment, the protein expressions of TP53, Cleaved CASP3 and BAX were significantly increased, while the protein expressions of p-AKT1 and BCL2L1 were significantly decreased in MCT-PAH rats and PDGFBB-induced PASMCs. CONCLUSION: This study identified that TP53, AKT1, CASP3, BAX, and BCL2L1 were the potential targets of Cordycepin against PAH by ameliorating pulmonary vascular remodeling, inhibiting the abnormal proliferation and migration of PASMCs and increasing apoptosis of PASMCs. which provided a new understanding of the pharmacological mechanisms of Cordycepin in the treatment of PAH.

10.
Clin Transl Oncol ; 26(5): 1209-1219, 2024 May.
Article in English | MEDLINE | ID: mdl-38070050

ABSTRACT

PURPOSE: Progression after first-line immunochemotherapy (ICT) for recurrent or metastatic nasopharyngeal carcinoma (R/M NPC) is a clinical concern due to subsequent limited treatment options. This study firstly predicted the progress outcome. METHODS: A cohort of 186 R/M NPC cases that received first-line ICT was included for developing a Cox regression model for progression-free survival (PFS) and risk stratification, which was verified by cross-validation. Discrimination and calibration were evaluated. Progression sites in risk groups was shown with a Sankey diagram. RESULTS: Baseline predictors including liver metastasis, trend of plasma Epstein-Barr virus DNA copies, lymphocyte-to-monocyte ratio, and level of platelet and lactate dehydrogenase were identified for model construction, which stratify the cohort into low, middle, and high-risk groups. The overall concordance index (C-index) was 0.67 (95% CI 0.62-0.73). The area under the curve (AUC) was 0.68 (95% CI 0.60-0.76), 0.74 (95% CI 0.66-0.82), 0.75 (95% CI 0.65-0.84) at predicting 12, 18, and 24 months PFS, indicating a moderate accuracy. Cross-validation showed the model performance was robust. Compared with the low-risk group (median PFS: 24.4 months, 95% CI 18.4 months to not reached), the high-risk group (median PFS: 7.1 months, 95% CI 6.4-10.1 months; hazard risk: 7.4, 95% CI 4.4-12.4, p < 0.001) progressed with more liver metastasis after ICT resistance. CONCLUSION: It was the first study that described the risk factors and progression characteristics in R/M NPC patients who received first-line ICT, investigating the progression patterns, which was helpful to identify patients with different risks and help guide personalized interventions.

11.
ACS Appl Mater Interfaces ; 16(1): 1225-1233, 2024 Jan 10.
Article in English | MEDLINE | ID: mdl-38112452

ABSTRACT

Constructing high-performance solution-processed organic light-emitting diodes (OLEDs) based on thermally activated delayed fluorescence (TADF) conjugated polymers remains a challenging issue. The electron-withdrawing ability of acceptors in TADF units significantly affects the TADF properties of the conjugated polymers. Herein, we have designed three TADF conjugated polymers, in which phenoxazine donors and anthracen-9(10H)-one acceptors are incorporated into the polymeric backbones and side chains, respectively, and the carbazole derivative is copolymerized as the host. By incorporating different heteroatoms, such as nitrogen, oxygen, or sulfur, with slightly different electronegativities into anthracen-9(10H)-one, the effect of the electron-withdrawing ability of the acceptor on the performance of conjugated TADF polymer-based OLEDs is thus systematically studied. It is found that the introduction of a nitrogen atom can enhance the spin-orbital coupling and RISC process due to the modulated energy levels and nature of the excited states. As a result, the solution-processed OLEDs based on the prepared polymer p-PXZ-XN display an excellent comprehensive performance with an EQEmax of 17.6%, a low turn-on voltage of 2.8 V, and a maximum brightness of 14750 cd m-2. Notably, the efficiency roll-off is quite low, maintaining 15.1% at 1000 cd m-2, 12.1% at 3000 cd m-2, and 6.1% at 10000 cd m-2, which ranks in the first tier among the reported TADF conjugated polymers. This work provides a guideline for constructing high-efficiency TADF polymers.

12.
Int J Biol Macromol ; 253(Pt 5): 127200, 2023 Dec 31.
Article in English | MEDLINE | ID: mdl-37793536

ABSTRACT

A polysaccharide CY-2 from C. yunnanensis was obtained through a process of consecutive water extraction, alcohol precipitation, and DEAE-52 fast-flow chromatography. CY-2, with an average molecular weight of 2.69 × 104 Da mainly consisted of glucose and mannose with a molar ratio of 33.5: 56.9. Infrared spectrum (IR), methylation analysis, and nuclear magnetic resonance (NMR) results revealed that CY-2 may have a backbone consisting of →6)-α-D-Manp-(1 â†’ 3)-ß-D-Glcp-(1→, and branch chain ß-D-Glcp-(1→. Meanwhile, CY-2 had a higher inhibition rate on α-glucosidase activity compared with other fractions (CY-0, CY-1, and CY-4) and was a mixed competitive inhibitor. In addition, CY-2 at the concentration of 10 µg/mL presented a superior power to improve glucose consumption and metabolism in HepG2 cells compared with metformin. Overall, these findings highlight the potential value of CY-2 as a hypoglycemic agent.


Subject(s)
Agaricales , Hypoglycemic Agents/pharmacology , Polysaccharides/pharmacology , Polysaccharides/chemistry , Glucose , Molecular Weight
13.
BMC Cardiovasc Disord ; 23(1): 504, 2023 10 11.
Article in English | MEDLINE | ID: mdl-37821869

ABSTRACT

BACKGROUND: Chronic Thromboembolic Pulmonary Hypertension (CTEPH) is a form of pulmonary hypertension with a high mortality rate. A new type of iron-mediated cell death is Ferroptosis, which is characterized by the accumulation of lethal iron ions and lipid peroxidation leading to mitochondrial atrophy and increased mitochondrial membrane density. Now, there is a lack of Ferroptosis-related biomarkers (FRBs) associated with pathogenic process of CTEPH. METHODS: The differentially expressed genes (DEGs) of CTEPH were obtained by GEO2R. Genes related to Ferroptosis were obtained from FerrDb database. The intersection of Ferroptosis and DEGs results in FRBs. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis were performed in Database for Annotation, Visualization and Integrated Discovery (DAVID) database. The optimal potential biomarkers for CTEPH were analyzed by least absolute shrinkage and selection operator (LASSO) and support vector machine-recursive feature elimination (SVM-RFE) machine learning. The four hub genes were verified from the Gene Expression Omnibus (GEO) dataset GSE188938. Immune infiltration was analyzed by CIBERSORT. SPSS software was used to analyze the Spearman rank correlation between FRBs identified and infiltration-related immune cells, and p < 0.05 was considered as statistically significant. RESULTS: In this study, potential genetic biomarkers associated with Ferroptosis in CTEPH were investigated and explored their role in immune infiltration. In total, we identified 17 differentially expressed Ferroptosis-associated genes by GEOquery package. The key FRBs including ARRDC3, HMOX1, BRD4, and YWHAE were screened using Lasso and SVM-RFE machine learning methods.Through gene set GSE188938 verification, only upregulation of gene ARRDC3 showed statistical difference. In addition, immune infiltration analysis using the CIBERSORT algorithm revealed the infiltration of Eosinophils and Neutrophils in CTEPH samples was less than that in the control group. And correlation analysis revealed that ARRDC3 was positively correlated with T cells follicular helper (r = 0.554, p = 0.017) and negatively correlated with Neutrophils (r = -0.47, p = 0.049). CONCLUSIONS: In conclusion, ARRDC3 upregulation with different immune cell infiltration were involved in the development of CTEPH. ARRDC3 might a potential Ferroptosis-related biomarker for CTEPH treatment. This study provided a new insight into pathogenesis CTEPH.


Subject(s)
Ferroptosis , Hypertension, Pulmonary , Humans , Ferroptosis/genetics , Hypertension, Pulmonary/diagnosis , Hypertension, Pulmonary/genetics , Nuclear Proteins , Transcription Factors , Biomarkers , Computational Biology , Iron , Cell Cycle Proteins
14.
Int J Med Mushrooms ; 25(8): 19-31, 2023.
Article in English | MEDLINE | ID: mdl-37560887

ABSTRACT

Polysaccharides serve as promising ingredients for health-beneficial functional foods, while there were no investigations into the structural characterizations and bioactivities of an edible mushroom Cantharellus yunnanensis. In the study, crude polysaccharides from this mushroom were extracted by hot water and isolated by ethanol precipitation. Then, a neutral polysaccharide (named CY-1) was purified from the crude polysaccharide by deproteinization with Sevag reagent, decolorization with a kind of macroporous adsorption resin SP-825, DEAE-52 cellulose column chromatography and dialysis. The physicochemical properties of CY-1 were characterized by UV, IR, SEM, NMR, and HPLC analyses. Structural characterizations revealed that CY-1 is a homogeneous heteropolysaccharide with an average molecular weight of 3.06 × 104 Da. CY-1 exhibited a honeycomb structure with an irregular branching shape, and it was composed of mannose, glucose, fucose, xylose, arabinose, galactose, rhamnose, and glucuronic acid, with molar fractions of 54.83%, 25.11%, 10.28% 4.53%, 2.12%, 1.64%, 0.83%, and 0.64%, respectively. In vitro hypoglycemic tests showed that CY-1 had an inhibitory effect on α-glucosidase. In addition, CY-1 of 160 µg/mL promoted glucose consumption in normal HepG2 cells. These results suggested that CY-1 may be a potential hypoglycemic agent.


Subject(s)
Agaricales , Hypoglycemic Agents , Polysaccharides , Agaricales/chemistry , Hypoglycemic Agents/chemistry , Hypoglycemic Agents/isolation & purification , Polysaccharides/chemistry , Polysaccharides/isolation & purification
15.
Zhongguo Zhen Jiu ; 43(8): 951-4, 2023 Aug 12.
Article in Chinese | MEDLINE | ID: mdl-37577894

ABSTRACT

This study summarizes the clinical thinking of acupuncture for snoring based on "disharmony qi leads to restlessness". According to the pathological characteristics of qi stagnation and blood stasis, phlegm dampness and internal obstruction in snoring patients, combined with the etiology, pathogenesis and location of the disease, the innovative viewpoint of "disharmony qi leads to restlessness" is proposed. It is believed that the key to snoring treatment lies in "regulating qi ". In clinical practice, acupuncture can directly regulate the qi of the disease's location, regulate the qi of the organs and viscera, and regulate the qi of the meridians to achieve overall regulation of the body's internal and external qi, smooth circulation of qi and blood, and ultimately achieve the therapeutic goal of harmonizing qi, stopping snoring, and improving sleep quality.


Subject(s)
Acupuncture Therapy , Meridians , Humans , Qi , Snoring/therapy , Psychomotor Agitation
16.
Light Sci Appl ; 12(1): 177, 2023 Jul 24.
Article in English | MEDLINE | ID: mdl-37482582

ABSTRACT

Blue perovskite light-emitting diodes (PeLEDs) are essential in pixels of perovskite displays, while their progress lags far behind their red and green counterparts. Here, we focus on recent advances of blue PeLEDs and systematically review the noteworthy strategies, which are categorized into compositional engineering, dimensional control, and size confinement, on optimizing microstructures, energy landscapes, and charge behaviors of wide-bandgap perovskite emitters (bandgap >2.5 eV). Moreover, the stability of perovskite blue emitters and related devices is discussed. In the end, we propose a technical roadmap for the fabrication of state-of-the-art blue PeLEDs to chase and achieve comparable performance with the other two primary-color devices.

17.
Cancers (Basel) ; 15(14)2023 Jul 19.
Article in English | MEDLINE | ID: mdl-37509336

ABSTRACT

Patients with breast cancer undergoing chemotherapy are susceptible to prolonged and severe neutropenia. Multiple biosimilars of long-acting granulocyte colony-stimulating factors (LA-G-CSFs) have been newly developed to prevent this disease. Nonetheless, which LA-G-CSF regimen has the optimal balance of efficacy and safety remains controversial. Moreover, there is a lack of evidence supporting clinical decisions on LA-G-CSF dose escalation in poor conditions. PubMed, Embase, Cochrane Library, Web of Science, and several Chinese databases were searched (December 2022) to collect randomized controlled trials (RCTs) about LA-G-CSFs preventing chemotherapy-induced neutropenia in breast cancer patients. No restrictions were imposed on language. A Bayesian network meta-analysis was performed. We assessed the incidence of severe neutropenia (SN) and febrile neutropenia (FN), the duration of SN (DSN), and the absolute neutrophil account recovery time (ANCrt) for efficacy, while the incidence of severe adverse events (SAE) was assessed for safety. The study was registered in PROSPERO (CRD42022361606). A total of 33 RCTs were included. Our network meta-analysis demonstrated that lipegfilgrastim 6 mg and eflapegrastim 13.2 mg outperformed other LA-G-CSFs with high efficacy rates and few safety concerns (SUCRA of lipegfilgrastim 6 mg: ANC rt 95.2%, FN 97.4%; eflapegrastim 13.2 mg: FN 87%, SN 89.3%). Additionally, 3.6 mg, 4.5 mg, 6 mg, and 13.2 mg dosages all performed significantly better than 1.8 mg in reducing the duration of SN (3.6 mg: DSN, SMD -0.68 [-1.13, -0.22; moderate]; 4.5 mg: -0.87 [-1.57, -0.17; low]; 6 mg: -0.89 [-1.49, -0.29; moderate]; 13.2 mg: -1.02 [1.63, -0.41; high]). Increasing the dosage from the guideline-recommended 6 mg to 13.2 mg can reduce both the duration and incidence of SN (SMD -0.13 [-0.24 to -0.03], RR 0.65 [0.43 to 0.96], respectively), with no significant difference in SAE. For patients with breast cancer, lipegfilgrastim 6 mg and eflapegrastim 13.2 mg might be the most effective regimen among LA-G-CSFs. Higher doses of LA-G-CSF may enhance efficacy without causing additional SAEs.

18.
Angew Chem Int Ed Engl ; 62(33): e202305571, 2023 Aug 14.
Article in English | MEDLINE | ID: mdl-37312245

ABSTRACT

Maximizing hole-transfer kinetics-usually a rate-determining step in semiconductor-based artificial photosynthesis-is pivotal for simultaneously enabling high-efficiency solar hydrogen production and hole utilization. However, this remains elusive yet as efforts are largely focused on optimizing the electron-involved half-reactions only by empirically employing sacrificial electron donors (SEDs) to consume the wasted holes. Using high-quality ZnSe quantum wires as models, we show that how hole-transfer processes in different SEDs affect their photocatalytic performances. We found that larger driving forces of SEDs monotonically enhance hole-transfer rates and photocatalytic performances by almost three orders of magnitude, a result conforming well with the Auger-assisted hole-transfer model in quantum-confined systems. Intriguingly, further loading Pt cocatalyts can yield either an Auger-assisted model or a Marcus inverted region for electron transfer, depending on the competing hole-transfer kinetics in SEDs.

19.
J Clin Med ; 12(7)2023 Mar 30.
Article in English | MEDLINE | ID: mdl-37048698

ABSTRACT

Both low and high glycated hemoglobin A1c (HbA1c) levels are well-established causal risk factors for all-cause and cardiovascular mortality in the general population and diabetic patients. However, the relationship between HbA1c with all-cause and cardiovascular mortality among patients with hypertension is unclear. We used NHANES data from 1999 to 2014 as the basis for this population-based cohort study. Based on HbA1c levels (HbA1c > 5, HbA1c > 5.5, HbA1c > 6, HbA1c > 6.5, HbA1c > 7%), hypertensive patients were divided into five groups. An analysis of multivariable Cox proportional hazards was conducted based on hazard ratios (HRs) and respective 95% confidence intervals (CIs). The relationship between HbA1c and mortality was further explored using Kaplan-Meier survival curves, restricted cubic spline curves, and subgroup analyses. In addition, 13,508 patients with hypertension (average age 58.55 ± 15.56 years) were included in the present analysis, with 3760 (27.84%) all-cause deaths during a follow-up of 127.69 ± 57.9 months. A U-shaped relationship was found between HbA1c and all-cause and cardiovascular mortality (all p for likelihood ratio tests were 0.0001). The threshold value of HbA1c related to the lowest risk for all-cause and cardiovascular mortality was 5.3% and 5.7%, respectively. Below the threshold value, increased HbA1c levels reduced the risk of all-cause mortality (HR 0.68, 95% CI 0.51-0.90, p = 0.0078) and cardiovascular mortality (HR 0.77, 95% CI 0.57-1.05, p = 0.0969). Inversely, above the threshold value, increased HbA1c levels accelerated the risk of all-cause mortality (HR 1.14, 95% CI 1.11-1.18, p < 0.0001) and cardiovascular mortality (HR 1.22, 95% CI 1.16-1.29, p < 0.0001). In conclusion, A U-shape relationship was observed between HbA1c and all-cause and cardiovascular mortality among hypertensive patients.

20.
Phytother Res ; 37(7): 2827-2840, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37037488

ABSTRACT

Previous reports have confirmed that saponins (ginsenosides) derived from Panax ginseng. C. A. Meyer exerted obvious memory-enhancing and antiaging effects, and the simpler the structure of ginsenosides, the better the biological activity. In this work, we aimed to explore the therapeutic effect and underlying molecular mechanism of 20(S)-protopanaxatriol (PPT), the aglycone of panaxatriol-type ginsenosides, by establishing D-galactose (D-gal)-induced subacute brain aging model in mice. The results showed that PPT treatment (10 and 20 mg/kg) for 4 weeks could significantly restore the D-gal (800 mg/kg for 8 weeks)-induced impaired memory function, choline dysfunction, and redox system imbalance in mice. Meanwhile, PPT also significantly reduced the histopathological changes caused by D-gal exposure. Moreover, PPT could increase TFEB/LAMP2 protein expression to promote mitochondrial autophagic flow. Importantly, the results from molecular docking showed that PPT had good binding ability with LAMP2 and TFEB, suggesting that TFEB/LAMP2 might play an important role in PPT to alleviate D-gal-caused brain aging.


Subject(s)
Ginsenosides , Panax , Mice , Animals , Ginsenosides/pharmacology , Galactose/adverse effects , Molecular Docking Simulation , Aging , Brain/metabolism , Panax/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...