Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Publication year range
1.
Guang Pu Xue Yu Guang Pu Fen Xi ; 33(4): 865-71, 2013 Apr.
Article in Chinese | MEDLINE | ID: mdl-23841387

ABSTRACT

Basic principles, development trends and applications status of distributed optical fiber Raman temperature sensor (DTS) are introduced. Performance parameters of DTS system include the sensing optical fiber length, temperature measurement uncertainty, spatial resolution and measurement time. These parameters have a certain correlation and it is difficult to improve them at the same time by single technology. So a variety of key techniques such as Raman amplification, pulse coding technique, Raman related dual-wavelength self-correction technique and embedding optical switching technique are researched to improve the performance of the DTS system. A 1 467 nm continuous laser is used as pump laser and the light source of DTS system (1 550 nm pulse laser) is amplified. When the length of sensing optical fiber is 50 km the Raman gain is about 17 dB. Raman gain can partially compensate the transmission loss of optical fiber, so that the sensing length can reach 50 km. In DTS system using pulse coding technique, pulse laser is coded by 211 bits loop encoder and correlation calculation is used to demodulate temperature. The encoded laser signal is related, whereas the noise is not relevant. So that signal-to-noise ratio (SNR) of DTS system can be improved significantly. The experiments are carried out in DTS system with single mode optical fiber and multimode optical fiber respectively. Temperature measurement uncertainty can all reach 1 degrees C. In DTS system using Raman related dual-wavelength self-correction technique, the wavelength difference of the two light sources must be one Raman frequency shift in optical fiber. For example, wavelength of the main laser is 1 550 nm and wavelength of the second laser must be 1 450 nm. Spatial resolution of DTS system is improved to 2 m by using dual-wavelength self-correction technique. Optical switch is embedded in DTS system, so that the temperature measurement channel multiply extended and the total length of the sensing optical fiber effectively extended. Optical fiber sensor network is composed.

2.
Opt Lett ; 37(22): 4768-70, 2012 Nov 15.
Article in English | MEDLINE | ID: mdl-23164907

ABSTRACT

A simple and low-cost vibration sensor based on single-mode nonadiabatic fiber tapers is proposed and demonstrated. The environmental vibrations can be detected by demodulating the transmission loss of the nonadiabatic fiber taper. Theoretical simulations show that the transmission loss is related to the microbending of the fiber taper induced by vibrations. Unlike interferometric sensors, this vibration sensor does not need any feedback loop to control the quadrature point to obtain a stable performance. In addition, it has no requirement for the coherence of the light source and is insensitive to temperature changes. Experimental results show that this sensing system has a wide frequency response range from a few hertz to tens of kilohertz with the maximal signal to noise ratio up to 73 dB.

3.
Guang Pu Xue Yu Guang Pu Fen Xi ; 31(4): 902-5, 2011 Apr.
Article in Chinese | MEDLINE | ID: mdl-21714225

ABSTRACT

By inscribing a long-period fiber grating (LPG) on a polarization-maintaining fiber (PMF), a fiber Sagnac loop sensor for simultaneous measurement of refractive index and temperature has been proposed and demonstrated. The LPG was fabricated on the PMF by using a CO2 laser, and then inserted into a fiber loop formed by using a normal single-mode fiber coupler. One of the transmission minimum of the Sagnac loop sensor was measured, whose wavelength varied with temperature and the intensity changed with refractive index. Temperature sensitivity of -0.654 nm x degrees C(-1) and refractive sensitivity of 49.9 dB x RIU(-1) have been achieved. The sensor system shows advantages of small size and low cost, and owns a good application prospect.

SELECTION OF CITATIONS
SEARCH DETAIL
...