Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
1.
Cell Oncol (Dordr) ; 2024 Feb 05.
Article in English | MEDLINE | ID: mdl-38315287

ABSTRACT

PURPOSE: Although mRNA vaccines have shown certain clinical benefits in multiple malignancies, their therapeutic efficacies against hepatocellular carcinoma (HCC) remains uncertain. This study focused on establishing a novel risk score system based on immune subtypes so as to identify optimal HCC mRNA vaccination population. METHODS: GEPIA, cBioPortal and TIMER databases were utilized to identify candidate genes for mRNA vaccination in HCC. Subsequently, immune subtypes were constructed based on the candidate genes. According to the differential expressed genes among various immune subtypes, a risk score system was established using machine learning algorithm. Besides, multi-color immunofluorescence of tumor tissues from 72 HCC patients were applied to validate the feasibility and efficiency of the risk score system. RESULTS: Twelve overexpressed and mutated genes associated with poor survival and APCs infiltration were identified as potential candidate targets for mRNA vaccination. Three immune subtypes (e.g. IS1, IS2 and IS3) with distinct clinicopathological and molecular profiles were constructed according to the 12 candidate genes. Based on the immune subtype, a risk score system was developed, and according to the risk score from low to high, HCC patients were classified into four subgroups on average (e.g. RS1, RS2, RS3 and RS4). RS4 mainly overlapped with IS3, RS1 with IS2, and RS2+RS3 with IS1. ROC analysis also suggested the significant capacity of the risk score to distinguish between the three immune subtypes. Higher risk score exhibited robustly predictive ability for worse survival, which was further independently proved by multi-color immunofluorescence of HCC samples. Notably, RS4 tumors exhibited an increased immunosuppressive phenotype, higher expression of the twelve potential candidate targets and increased genome altered fraction, and therefore might benefit more from vaccination. CONCLUSIONS: This novel risk score system based on immune subtypes enabled the identification of RS4 tumor that, due to its highly immunosuppressive microenvironment, may benefit from HCC mRNA vaccination.

2.
J Integr Neurosci ; 23(1): 3, 2024 Jan 10.
Article in English | MEDLINE | ID: mdl-38287840

ABSTRACT

BACKGROUND: The impact of the methylenetetrahydrofolate reductase (MTHFR) C677T mutation on the relationship between plasma homocysteine (Hcy) levels and stroke has been extensively studied and documented in previous study. However, it remains unclear whether the MTHFR C677T mutation can affect the response to Hcy lowering treatment in stroke patients with hyperhomocysteinemia (HHcy). Understanding the impact of genetic factors on treatment response can help optimize personalized treatment strategies for stroke patients with HHcy. We aimed to investigate the potential association between the MTHFR C677T gene polymorphisms and the effectiveness of Hcy lowering treatment using vitamin therapy in stroke patients with HHcy. METHODS: The MTHFR C677T genotype polymorphisms were identified using polymerase chain reaction-restriction fragment length polymorphism, and the distribution of three genotypes in the MTHFR C677T gene locus was compared. The treatment effects of Hcy lowering agents were compared among patients with different genotypes. RESULTS: Among the 320 stroke patients enrolled in the study, 258 (80.6%) were diagnosed with HHcy. Of these, 162 patients (Effective Group) responded well to the clinical Hcy lowering treatment, while 96 patients (Invalid Group) failed to achieve sufficient response even after taking combination supplements of folic acid, Vitamin B6, and methylcobalamin for one month. Significant differences were observed in terms of age (p < 0.001), hypertension (p = 0.034), dyslipidemia (p = 0.022), hyperuricemia (p = 0.013) and genotype distribution of MTHFR C677T gene polymorphism (p < 0.001) between the Invalid group and the Effective group. The multivariate regression analysis revealed that the T allele (odd rations [OR], 1.327; 95% confidence interval [CI], 1.114-1.580; p = 0.0015) was independently associated with an insufficient Hcy lowering treatment effect. Additionally, the TT genotype was independently associated with insufficient response in both the codominant model (OR, 1.645; 95% CI, 1.093-2.476; p = 0.017) and the recessive model (TT versus CC + CT; OR, 1.529; 95% CI, 1.145-2.042; p = 0.004). However, no relationship was observed between CT + TT genotypes and poor treatment effect in the dominate model. CONCLUSIONS: Our findings suggested that the TT genotype and T allele of MTHFR C677T polymorphism were independently associated with an insufficient Hcy lowering treatment effect in stroke patients with HHcy.


Subject(s)
Hyperhomocysteinemia , Stroke , Humans , Hyperhomocysteinemia/drug therapy , Hyperhomocysteinemia/genetics , Polymorphism, Genetic , Stroke/complications , Stroke/drug therapy , Stroke/genetics , Methylenetetrahydrofolate Reductase (NADPH2)/genetics , Homocysteine/genetics , Vitamins
3.
Mol Diagn Ther ; 27(6): 741-752, 2023 11.
Article in English | MEDLINE | ID: mdl-37587253

ABSTRACT

BACKGROUND: Von Hippel-Lindau (VHL) disease is an autosomal dominant hereditary tumor syndrome with an incidence of approximately 1/36,000. VHL disease-associated clear cell renal cell carcinoma (ccRCC) is the most common congenital RCC. Although recent advances in treating RCC have improved the long-term prognosis of patients with VHL disease, kidney cancer is still the leading cause of death in these patients. Therefore, finding new targets for diagnosing and treating VHL disease-associated ccRCC is still essential. METHODS: In this study, we collected matched tumor tissues and normal samples from 25 patients with VHL disease-associated ccRCC, diagnosed and surgically treated in the Department of Urology, Peking University First Hospital. After screening, we performed whole genome bisulfite sequencing (WGBS) on 23 pairs of tissues and RNA-seq on 6 pairs of tissues. And we also compared the VHL disease-associated ccRCC transcriptome data with the sporadic ccRCC transcriptome data from the The Cancer Genome Atlas (TCGA) public database RESULTS: We found that the methylation level of VHL disease-associated ccRCC tumor tissues was significantly lower than that of normal tissues. The tumor tissues showed a difference in the copy number of 3p loss and 5q and 7q gain compared with normal tissues. We integrated RNA-seq and WGBS data to reveal methylation candidate genes associated with VHL disease-associated ccRCC; our results showed 124 hypermethylated and downregulated genes, and 245 hypomethylated and upregulated genes. By comparing the VHL disease-associated ccRCC transcriptome data with the sporadic ccRCC transcriptome data from the TCGA public database, we found that the major pathways of differential gene enrichment differed between them. CONCLUSIONS: Our study mapped the multiomics of copy number variation, methylation and mRNA level changes in tumor and normal tissues of clear cell renal cell carcinoma with VHL syndrome, which provides a solid foundation for the mechanistic study, biomarker screening, and therapeutic target discovery of clear cell renal cell carcinoma.


Subject(s)
Carcinoma, Renal Cell , Kidney Neoplasms , von Hippel-Lindau Disease , Humans , Carcinoma, Renal Cell/genetics , von Hippel-Lindau Disease/genetics , Transcriptome , DNA Copy Number Variations , Von Hippel-Lindau Tumor Suppressor Protein/genetics , Von Hippel-Lindau Tumor Suppressor Protein/metabolism , Kidney Neoplasms/genetics
4.
Transl Androl Urol ; 12(7): 1167-1183, 2023 Jul 31.
Article in English | MEDLINE | ID: mdl-37554538

ABSTRACT

Background: Renal cell carcinoma (RCC) is a common and aggressive tumor. A newly discovered form of programmed cell death, ferroptosis, plays an important role in tumor development and progression. However, a clear prognostic correlation between Ferroptosis-related genes (FRGs) and RCC has not yet been established. In this study, prognostic markers associated with FRGs were investigated to improve the therapeutic, diagnostic, and preventive strategies available to patients with renal cancer. Methods: The present study analyzed the predictive value of 23 FRGs in RCC through bioinformatics techniques, including Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) tools, Kaplan-Meier survival analysis, Cox regression modeling, tumor mutational burden (TMB), CIBERSORT, and half maximal inhibitory concentration (IC50) difference analysis. Results: We screened FRGs by differentially expressed genes (DEGs) and overall survival (OS). Four candidate genes were obtained by hybridization. Then, we constructed a two-gene prognostic signature (NCOA4 and CDKN1A) via univariate Cox regression and multivariate stepwise Cox regression, which classified RCC patients into high- and low-risk groups, and patients in the high-risk group were found to have worse OS and progression-free survival (PFS). We also found that patients with higher TNM stage, T stage, and M stage had higher risk scores than those with lower TNM stage, T stage, and M stage (P<0.05). Males had higher risk scores than females. This signature was identified as an independent prognostic indicator for RCC. These results were validated in both the test cohort and the entire cohort. In addition, we also constructed a nomogram that predicted the OS in RCC patients, the consistency index (C-index) of the nomogram was 0.731 [95% confidence interval (CI): 0.672-0.790], the areas under the receiver operating characteristic (ROC) curves (AUCs) were 0.728, 0.704, and 0.898 at 1-, 3-, and 5-year, respectively, which shows that nomogram has good prediction ability. and we also analyzed the immune status and drug sensitivity between the high- and low-risk groups. Conclusions: We constructed a prognostic model associated with ferroptosis, which may provide clinicians with a reliable predictive assessment tool and offer new perspectives for the future clinical management of RCC.

5.
J Exp Clin Cancer Res ; 42(1): 159, 2023 Jul 06.
Article in English | MEDLINE | ID: mdl-37415241

ABSTRACT

BACKGROUND: The management of advanced clear cell renal cell carcinoma (ccRCC) remains a major challenge in clinical practice, and the construction of more reliable prognostic prediction models and the further elucidation of key molecular mechanisms of tumor progression are topics in urgent need of in-depth investigation. METHODS: We used CIBERSORT to estimate the proportion of 22 tumor-infiltrating immune cell types in the TCGA-KIRC cohort. Weighted gene co-expression network analysis, least absolute shrinkage and selection operator regression analysis were used to build risk prediction models. Expression patterns and clinical significance of TRAF2 were determined through bioinformatics analysis, real-time qPCR, Western Blot, immunohistochemistry. GSEA analysis, transmission electron microscopy, 2D/3D colony formation assay, cell migration and invasion assay, and tube-formation assay were used to investigate the underlying function and mechanism of the TRAF2/M2 macrophage/autophagy axis. RESULTS: We constructed a novel prognostic prediction model based on M2 macrophage-related genes, which was identified as an accurate, independent and specific prognostic risk model for ccRCC patients. A reliable nomogram was constructed to predict 1-, 3-, and 5-year overall survival for patients with ccRCC. As one of the constituent genes of the risk model, TRAF2 was determined to be upregulated in ccRCC and associated with poor clinical prognosis. We found that TRAF2 promotes malignant progression of ccRCC by regulating macrophage polarization, migration and angiogenesis. Mechanistically, we found that TRAF2 promotes the polarization of M2 macrophages, and this chemotaxis is achieved in an autophagy-dependent pathway. Orthotopic tumor growth assay results revealed that TRAF2 plays a key role as a promotor of ccRCC growth and metastasis. CONCLUSIONS: In conclusion, this risk model is highly predictive of prognostic in ccRCC patients, which is expected to promote improved treatment evaluation and comprehensive management of ccRCC. Moreover, our findings reveal that the TRAF2/M2 macrophage/autophagy axis plays a key regulatory role in the malignant progression of ccRCC, and suggest that TRAF2 is a potential novel therapeutic target for advanced ccRCC.


Subject(s)
Carcinoma, Renal Cell , Carcinoma , Kidney Neoplasms , Humans , Autophagy/genetics , Carcinoma, Renal Cell/genetics , Kidney Neoplasms/genetics , TNF Receptor-Associated Factor 2/genetics , Tumor-Associated Macrophages
6.
BMC Med Res Methodol ; 23(1): 152, 2023 06 29.
Article in English | MEDLINE | ID: mdl-37386371

ABSTRACT

OBJECTIVE: Real-world data (RWD) and real-world evidence (RWE) have been paid more and more attention in recent years. We aimed to evaluate the reporting quality of cohort studies using real-world data (RWD) published between 2013 and 2021 and analyze the possible factors. METHODS: We conducted a comprehensive search in Medline and Embase through the OVID interface for cohort studies published from 2013 to 2021 on April 29, 2022. Studies aimed at comparing the effectiveness or safety of exposure factors in the real-world setting were included. The evaluation was based on the REporting of studies Conducted using Observational Routinely-collected health Data (RECORD) statement. Agreement for inclusion and evaluation was calculated using Cohen's kappa. Pearson chi-square test or Fisher's exact test and Mann-Whitney U test were used to analyze the possible factors, including the release of RECORD, journal IFs, and article citations. Bonferroni's correction was conducted for multiple comparisons. Interrupted time series analysis was performed to display the changes in report quality over time. RESULTS: 187 articles were finally included. The mean ± SD of the percentage of adequately reported items in the 187 articles was 44.7 ± 14.3 with a range of 11.1-87%. Of 23 items, the adequate reporting rate of 10 items reached 50%, and the reporting rate of some vital items was inadequate. After Bonferroni's correction, the reporting of only one item significantly improved after the release of RECORD and there was no significant improvement in the overall report quality. For interrupted time series analysis, there were no significant changes in the slope (p = 0.42) and level (p = 0.12) of adequate reporting rate. The journal IFs and citations were respectively related to 2 areas and the former significantly higher in high-reporting quality articles. CONCLUSION: The endorsement of the RECORD cheklist was generally inadequate in cohort studies using RWD and has not improved in recent years. We encourage researchers to endorse relevant guidelines when utilizing RWD for research.


Subject(s)
Research Personnel , Humans , Cohort Studies , Interrupted Time Series Analysis , MEDLINE , Statistics, Nonparametric
7.
Front Immunol ; 14: 1180837, 2023.
Article in English | MEDLINE | ID: mdl-37325614

ABSTRACT

Objectives: The mechanism of Brucella infection regulating macrophage phenotype has not been completely elucidated until now. This study aimed to determine the mechanism of Brucella abortus in the modulation of macrophage phenotype using RAW264.7 cells as a model. Materials and methods: RT-qPCR, ELISA and flow cytometry were used to detect the inflammatory factor production and phenotype conversion associated with M1/M2 polarization of macrophages by Brucella abortus infection. Western blot and immunofluorescence were used to analyze the role of nuclear factor kappa B (NF-κB) signaling pathway in regulation of Brucella abortus-induced macrophage polarization. Chromatin immunoprecipitation sequencing (Chip-seq), bioinformatics analysis and luciferase reporter assay were used to screen and validate NF-κB target genes associated with macrophage polarization and further verify its function. Results: The results demonstrate that B. abortus induces a macrophage phenotypic switch and inflammatory response in a time-dependent manner. With the increase of infection time, B. abortus infection-induced M1-type increased first, peaked at 12 h, and then decreased, whereas the M2-type decreased first, trough at 12 h, and then increased. The trend of intracellular survival of B. abortus was consistent with that of M2 type. When NF-κB was inhibited, M1-type polarization was inhibited and M2-type was promoted, and the intracellular survival of B. abortus increased significantly. Chip-seq and luciferase reporter assay results showed that NF-κB binds to the glutaminase gene (Gls). Gls expression was down-regulated when NF-κB was inhibited. Furthermore, when Gls was inhibited, M1-type polarization was inhibited and M2-type was promoted, the intracellular survival of B. abortus increased significantly. Our data further suggest that NF-κB and its key target gene Gls play an important role in controlling macrophage phenotypic transformation. Conclusions: Taken together, our study demonstrates that B. abortus infection can induce dynamic transformation of M1/M2 phenotype in macrophages. Highlighting NF-κB as a central pathway that regulates M1/M2 phenotypic transition. This is the first to elucidate the molecular mechanism of B. abortus regulation of macrophage phenotype switch and inflammatory response by regulating the key gene Gls, which is regulated by the transcription factor NF-κB.


Subject(s)
Brucella abortus , NF-kappa B , NF-kappa B/metabolism , Glutaminase/metabolism , Signal Transduction/physiology , Macrophages/metabolism
8.
J Med Genet ; 60(5): 477-483, 2023 05.
Article in English | MEDLINE | ID: mdl-37080588

ABSTRACT

BACKGROUND: Approximately 20%-40% of patients with von Hippel-Lindau (VHL) disease, an autosomal dominant hereditary disease, exhibit large deletions (LDs). Few studies have focused on this population. Hence, we aimed to elucidate the genotype-phenotype correlations and clinical outcomes in VHL patients with LDs. METHODS: In this retrospective study, we included 119 patients with VHL disease from 50 unrelated families in whom LDs were detected using traditional and next-generation sequencing methods. Other germline mutations were confirmed by Sanger sequencing. Genotype-phenotype correlations and survival were analysed in different groups using Kaplan-Meier and Cox regression. We also evaluated therapeutic response to tyrosine kinase inhibitor (TKI) therapy. RESULTS: The overall penetrance of patients aged <60 was 95.2%. Two VHL patients with LDs also carried CHEK2 and FLCN germline mutations. An earlier age of onset of retinal haemangioblastoma was observed in the next generation. Patients with exon 2 deletion of VHL had an earlier onset age of renal cell carcinoma and pancreatic lesions. The risk of renal cell carcinoma was lower in VHL patients with LDs and a BRK1 deletion. The group with earlier age of onset received poorer prognosis. Four of eight (50%) patients showed partial response to TKI therapy. CONCLUSION: The number of generations and the status of exon 2 could affect age of onset of VHL-related manifestations. Onset age was an independent risk factor for overall survival. TKI therapy was effective in VHL patients with LDs. Our findings would further support clinical surveillance and decision-making processes.


Subject(s)
Carcinoma, Renal Cell , Kidney Neoplasms , von Hippel-Lindau Disease , Humans , von Hippel-Lindau Disease/complications , von Hippel-Lindau Disease/genetics , von Hippel-Lindau Disease/epidemiology , Carcinoma, Renal Cell/genetics , Retrospective Studies , Von Hippel-Lindau Tumor Suppressor Protein/genetics , Genetic Association Studies , Kidney Neoplasms/genetics
9.
Cell Death Dis ; 14(3): 212, 2023 03 25.
Article in English | MEDLINE | ID: mdl-36966163

ABSTRACT

Recent evidences have suggested that Zinc finger protein 582 (ZNF582) plays different important roles in various tumors, but its clinical role, biological function and regulatory mechanism in clear cell renal cell carcinoma (ccRCC) are still vague. Through analyzing GEO and TCGA-KIRC data and validation with local samples, we identified the low expression pattern of ZNF582 in ccRCC. Decreased ZNF582 expression is correlated with higher tumor stage and grade, distant metastasis and poor prognosis. By analyzing the DNA methylation data of ccRCC in TCGA-KIRC and using Massarray DNA methylation and demethylation analysis, we confirmed the hypermethylation status of ZNF582 in ccRCC and its negative regulation on ZNF582 expression. Using cell phenotype experiments and orthotopic kidney tumor growth models, we determined the inhibitory effect of ZNF582 overexpression on ccRCC growth and metastasis in vivo and in vitro. Mechanistically, using TMT (Tandem mass tags) quantitative proteomics test, Co-IP (Co-immunoprecipitation) and Western Blot experiments, we clarified that ZNF582 binds to TJP2 and up-regulates TJP2 protein expression. Increased TJP2 protein combines with ERK2 to promote ERK2 protein expression and suppresses the phosphorylation of ERK2, thereby inhibiting the growth and metastasis of ccRCC. In general, our findings provide the first solid theoretical rationale for targeting ZNF582/TJP2/ERK2 axis to improve ccRCC treatment.


Subject(s)
Carcinoma, Renal Cell , Kidney Neoplasms , Humans , Carcinoma, Renal Cell/metabolism , Phosphorylation , Kidney Neoplasms/metabolism , Kidney/pathology , Proteins/metabolism , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Zonula Occludens-2 Protein/genetics , Zonula Occludens-2 Protein/metabolism , Kruppel-Like Transcription Factors/genetics , Kruppel-Like Transcription Factors/metabolism
10.
J Oncol ; 2022: 2124088, 2022.
Article in English | MEDLINE | ID: mdl-36536785

ABSTRACT

Clear cell renal cell carcinoma (ccRCC) is a common malignancy of the urological system with poor prognosis. Cuproptosis is a recently discovered novel manner of cell death, and the hub gene FDX1 could promote cuproptosis. However, the potential roles of cuproptosis-related genes (CRGs) and FDX1 for predicting prognosis, the immune microenvironment, and therapeutic response have been poorly studied in ccRCC. In the present study, The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) data were downloaded. CRGs were subjected to prognosis analysis, and three of them were used to construct the prognostic model by least absolute shrinkage and selection operator (LASSO) regression. The CRGs prognostic model showed excellent performance. Moreover, based on the risk score of the model, the nomogram was developed to predict 1-year, 3-year, and 5-year survival. Furthermore, the hub gene of cuproptosis, FDX1, was an independent prognostic biomarker in multivariate Cox regression analysis. The pan-cancer analysis showed that FDX1 was significantly downregulated and closely related to prognosis in ccRCC among 33 cancer types. Lower FDX1 was also correlated with worse clinicopathologic features. The lower expression of FDX1 in ccRCC was verified in the external database and our own database, which may be caused by DNA methylation. We further demonstrated that the tumor mutational burden (TMB) and immune cell infiltration were related to the expression of FDX1. Immune response and drug sensitivity analysis revealed that immunotherapy or elesclomol may have a favorable treatment effect in the high FDX1 expression group and sunitinib or axitinib may work better in the low FDX1 expression group. In conclusion, we constructed a CRGs prognostic model and revealed that FDX1 could serve as a prognostic biomarker and predict therapeutic response in ccRCC. The study will provide a novel, precise, and individual treatment strategy for ccRCC patients.

11.
Int J Biol Sci ; 18(15): 5943-5962, 2022.
Article in English | MEDLINE | ID: mdl-36263177

ABSTRACT

The progression of clear cell renal cell carcinoma (ccRCC) remains a major challenge in clinical practice, and elucidation of the molecular drivers of malignancy progression is critical for the development of effective therapeutic targets. Recent studies have demonstrated that N6-methyladenosine (m6A) is the most abundant modification of eukaryotic mRNA and plays a key role in tumorigenesis and progression. However, the biological roles and underlying mechanisms of m6A-mediated autophagy in cancers especially in ccRCC remain poorly elucidated. m6A dot blot assay, m6A RNA methylation assay kit and immunofluorescence analysis were used to profile m6A levels in tissue samples and their correlation with autophagic flux. Expression patterns and clinical significance of fat mass and obesity-associated protein (FTO) were determined through bioinformatics analysis, real-time PCR, western blotting, immunohistochemistry. RNA-seq, MeRIP-seq, MeRIP-qRT-PCR, RIP-qRT-PCR, transmission electron microscopy, immunofluorescence analysis and luciferase reporter assay were used to investigate the underlying mechanism of the FTO-autophagy axis. The role of FTO and autophagy in ccRCC progression was evaluated both in vitro and in vivo. Here we found that m6A modification was suppressed and closely related to autophagic flux in ccRCC. Elevated FTO was inhibited by rapamycin, whereas silencing FTO enhanced autophagic flux and impaired ccRCC growth and metastasis. SIK2 was identified as a functional target of m6A-mediated autophagy, thereby prompting FTO to play a conserved and important role in inhibiting autophagy and promoting tumorigenesis through an m6A-IGF2BP2 dependent mechanism. Moreover, the small molecule inhibitor FB23-2 targeting FTO inhibited tumor growth and prolonged survival in the patient-derived xenograft (PDX) model mice, suggesting that FTO is a potential effective therapeutic target for ccRCC. Our findings uncovered the crucial role of FTO/autophagy/SIK2 axis in modulating the progression of ccRCC, suggesting that FTO may serve as a valuable prognostic biomarker and promising therapeutic target in ccRCC.


Subject(s)
Alpha-Ketoglutarate-Dependent Dioxygenase FTO , Carcinoma, Renal Cell , Kidney Neoplasms , Animals , Humans , Mice , Alpha-Ketoglutarate-Dependent Dioxygenase FTO/metabolism , Autophagy/genetics , Biomarkers , Carcinogenesis/genetics , Carcinoma, Renal Cell/metabolism , Cell Line, Tumor , Kidney Neoplasms/metabolism , RNA Stability , RNA, Messenger/genetics , RNA-Binding Proteins/metabolism , Sirolimus
12.
J Immunol Res ; 2022: 4946197, 2022.
Article in English | MEDLINE | ID: mdl-36313180

ABSTRACT

Background: FXYD2, a gene coding for the γ subunit of Na+/K+-ATPase, was demonstrated to involve in carcinogenesis recently. However, the specific role of FXYD2 in clear cell renal cell carcinoma (ccRCC) remains unknown. The current study was conducted to investigate the expression, biological function, and potentially immune-related mechanisms of FXYD2 in ccRCC. Materials and methods. The data from TCGA-KIRC, ICGC, GEO, Oncomine, ArrayExpress, TIMER, HPA datasets, and our clinical samples were used to determine and validate the expression level, prognostic roles, and potentially immune-related mechanisms in ccRCC. Cell function assays were performed to investigate the biological role of FXYD2 in vitro. Results: FXYD2 was identified to be downregulated in ccRCC tissue compared to normal tissue, which was confirmed by our RT-PCR, WB, and IHC analyses. Kaplan-Meier survival analysis and Cox regression analysis suggested that downregulated FXYD2 could independently predict poor survival of ccRCC patients. Through the ESTIMATE algorithm, ssGSEA algorithm, CIBERSORT algorithm, TIMER database, and our laboratory experiment, FXYD2 was found to correlate with the immune landscape, especially regulatory T cells (Treg), in ccRCC. Gain-of-function experiment revealed that FXYD2 could restrain cell proliferation, migration, and invasion in vitro. Functional enrichment analysis illustrated that TGF-ß-SMAD2/3, Notch, and PI3K-Akt-mTOR signaling pathways may be potential signaling pathways of FXYD2 in ccRCC. Conclusions: Downregulation of FXYD2 is associated with ccRCC tumorigenesis, poor prognosis, and increased Treg infiltration in ccRCC, which may be related to TGF-ß-SMAD2/3, Notch, and PI3K-Akt-mTOR signaling pathways. This will probably provide a novel prognostic marker and potential therapeutic target for ccRCC.


Subject(s)
Carcinoma, Renal Cell , Kidney Neoplasms , Humans , Carcinoma, Renal Cell/pathology , Kidney Neoplasms/pathology , T-Lymphocytes, Regulatory/metabolism , Down-Regulation , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Prognosis , TOR Serine-Threonine Kinases/metabolism , Transforming Growth Factor beta/metabolism , Sodium-Potassium-Exchanging ATPase
13.
Int J Biol Sci ; 18(6): 2329-2344, 2022.
Article in English | MEDLINE | ID: mdl-35414767

ABSTRACT

Our previous study has proved that down-regulation of CLDN10 (Claudin-10) in ccRCC (clear cell renal cell carcinoma) was closely related to tumor metastasis and predicted an unfavorable prognosis by analyzing TCGA-KIRC data. However, the effects of CLDN10 on the progression of ccRCC and its mechanisms of action remain elusive. During the study, a large number of clinical samples were utilized to verify the reduced expression of CLDN10 in ccRCC and its association with tumor metastasis and poor prognosis, and our results confirmed that lower CLDN10 expression was an independent predictor of shorter OS (HR: 4.0860, 95%CI: 2.4737-6.7490, P<0.0001) and DFS (HR: 4.3680, 95%CI: 2.2800-8.3700, P<0.0001) in metastatic ccRCC patients. CLDN10 overexpression accelerated cell apoptosis and restrained cell proliferation, migration and invasion in vitro. Besides, CLDN10 overexpression suppressed ccRCC growth and lung metastasis and promoted apoptosis in orthotopic models. Mechanistically, we found that CLDN10 overexpression up-regulated the acetylation and expression levels of ATP5O (ATP synthase subunit O, mitochondrial), leading to the dysfunction of mitochondrial, thereby suppressing the growth and metastasis of ccRCC through increasing the levels of NDUFS2, ROS, Cleaved-Caspase 3, E-cadherin and SDHB and decreasing the levels of N-cadherin and mitochondrial membrane potential. Moreover, knockdown of ATP5O expression based on the overexpression of CLDN10 could reverse the increase in NDUFS2, ROS, Cleaved-Caspase 3, E-cadherin and SDHB levels, the decrease in N-cadherin and mitochondrial membrane potential levels and the inhibition of ccRCC phenotypes caused by CLDN10 overexpression. Taken together, these findings for the first time illuminate the mechanism by which CLDN10 overexpression suppresses the growth and metastasis of ccRCC.


Subject(s)
Carcinoma, Renal Cell , Kidney Neoplasms , Cadherins/metabolism , Carcinoma, Renal Cell/metabolism , Caspase 3/metabolism , Cell Line, Tumor , Cell Proliferation/genetics , Claudins , Gene Expression Regulation, Neoplastic/genetics , Humans , Kidney Neoplasms/metabolism , Mitochondria/metabolism , Neoplasm Metastasis/pathology , Reactive Oxygen Species/metabolism
14.
Int J Biol Sci ; 18(6): 2583-2596, 2022.
Article in English | MEDLINE | ID: mdl-35414787

ABSTRACT

Background: The current studies only indicated that long non-coding RNA (lncRNA) APCDD1L-AS1, as a novel lncRNA, may play a role in oral squamous cell carcinoma and lung cancer. However, its potential role in clear cell renal cell carcinoma (ccRCC) and its possible mechanism of action remain vague. Methods: TCGA-KIRC and GEO data and qRT-PCR and pyrosequencing results of clinical specimens were used to identify the expression level and DNA methylation status of APCDD1L-AS1. The effects of APCDD1L-AS1 overexpression on ccRCC growth and metastasis were determined by function experiments. Western blot and Tandem mass tags (TMT) were utilized to explore the relationship between APCDD1L-AS1 and VHL expression and its downstream underlying mechanisms. Results: The expression of APCDD1L-AS1 was downregulated in ccRCC. Decreased APCDD1L-AS1 expression was related to higher tumor stage and histological grade and shorter RFS (Relapse-free survival). Besides, APCDD1L-AS1 overexpression restrained the growth and metastasis of ccRCC cells in vitro and in vivo. Moreover, reduced APCDD1L-AS1 expression could be caused by DNA hypermethylation and loss of von Hippel Lindau (VHL) protein expression. Furthermore, the dysregulation of histones expression caused by APCDD1L-AS1 overexpression may be one of the important mechanisms to suppress the progression of ccRCC. Conclusion: APCDD1L-AS1 was able to inhibit the progression of ccRCC, and its decreased expression could be caused by DNA hypermethylation and loss of VHL protein expression. Therefore, APCDD1L-AS1 may serve as a new therapeutic target in the treatment of ccRCC.


Subject(s)
Carcinoma, Renal Cell , Carcinoma, Squamous Cell , Head and Neck Neoplasms , Kidney Neoplasms , Mouth Neoplasms , RNA, Long Noncoding , Carcinoma, Renal Cell/metabolism , Carcinoma, Squamous Cell/genetics , Cell Line, Tumor , DNA/metabolism , DNA Methylation/genetics , Down-Regulation/genetics , Gene Expression Regulation, Neoplastic/genetics , Humans , Kidney Neoplasms/metabolism , Mouth Neoplasms/genetics , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Von Hippel-Lindau Tumor Suppressor Protein/genetics
15.
Front Immunol ; 12: 790661, 2021.
Article in English | MEDLINE | ID: mdl-34925373

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) has a hypoxic and desmoplastic tumor microenvironment (TME), leading to treatment failure. We aimed to develop a prognostic classifier to evaluate hypoxia status and hypoxia-related molecular characteristics of PDAC. In this study, we classified PDAC into three clusters based on 16 known hypoxia-inducible factor 1 (HIF-1)-related genes. Nine differentially expressed genes were identified to construct an HIF-1 score system, whose predictive efficacy was evaluated. Furthermore, we investigated oncogenic pathways and immune-cell infiltration status of PDAC with different scores. The C-index of the HIF-1score system for OS prediction in the meta-PDAC cohort and the other two validation cohorts were 0.67, 0.63, and 0.65, respectively, indicating that it had a good predictive value for patient survival. Furthermore, the area under the curve (AUC) of the receiver operating characteristic (ROC) curve of the HIF-1α score system for predicting 1-, 3-, and 4-year OS indicated the HIF-1α score system had an optimal discrimination of prognostic prediction for PDAC. Importantly, our model showed superior predictive ability compared to previous hypoxia signatures. We also classified PDAC into HIF-1 scores of low, medium, and high groups. Then, we found high enrichment of glycolysis, mTORC1 signaling, and MYC signaling in the HIF-1 score high group, whereas the cGMP metabolic process was activated in the low score group. Of note, analysis of public datasets and our own dataset showed a high HIF-1 score was associated with high immunosuppressive TME, evidenced by fewer infiltrated CD8+ T cells, B cells, and type 1 T-helper cells and reduced cytolytic activity of CD8+ T cells. In summary, we established a specific HIF-1 score system to discriminate PDAC with various hypoxia statuses and immune microenvironments. For highly hypoxic and immunosuppressive tumors, a combination treatment strategy should be considered in the future.


Subject(s)
Biomarkers, Tumor/genetics , Carcinoma, Pancreatic Ductal/genetics , Gene Expression Profiling , Hypoxia-Inducible Factor 1/genetics , Pancreatic Neoplasms/genetics , Transcriptome , Tumor Hypoxia , Tumor Microenvironment/immunology , Biomarkers, Tumor/metabolism , Carcinoma, Pancreatic Ductal/immunology , Carcinoma, Pancreatic Ductal/metabolism , Carcinoma, Pancreatic Ductal/therapy , Clinical Decision-Making , Gene Expression Regulation, Neoplastic , Humans , Hypoxia-Inducible Factor 1/metabolism , Lymphocytes, Tumor-Infiltrating/immunology , Pancreatic Neoplasms/immunology , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/therapy , Predictive Value of Tests , Prognosis , Reproducibility of Results , Signal Transduction , Tumor Escape
16.
Transplant Proc ; 53(7): 2407-2414, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34474914

ABSTRACT

BACKGROUND: To examine the effect of interleukin (IL)-21 on the proliferation, subsets, and immunological characteristics of CD8+CD28- T cells stimulated by IL-15 in vitro. METHODS: Purified CD8+ T cells stimulated with allogeneic CD2- cells obtained from the peripheral blood mononuclear cells of healthy volunteers were cocultured in the presence of IL-15 alone or IL-21 and IL-15 combined. The dynamic changes in the proliferation, subsets, and phenotypic characteristics of CD8+CD28- T cells were detected. Our work, involving human participants, complied with the Declaration of Helsinki and the Declaration of Istanbul. RESULTS: IL-21 prevented the expansion of CD8+CD28- T cells stimulated by IL-15 by sustaining CD28 expression at the mRNA level. IL-15 altered the expanded CD8+CD28- T cell memory subsets over the coculture duration, but the addition of IL-21 could change the subset distribution. In the presence of IL-15, the in vitro-expanded CD8+CD28- T cells were mainly intermediately differentiated cells, but they were mainly late differentiated cells in the presence of IL-21 plus IL-15. Moreover, IL-21 upregulated the expression of toxic molecules in the IL-15-expanded CD8+CD28- T cells. CONCLUSIONS: IL-21 prevents IL-15-induced CD8+CD28- T cell amplification by downregulating CD28 at the transcriptional level. IL-21 can alter the subpopulation distribution and phenotypic characteristics of CD8+CD28- T cells stimulated by IL-15.


Subject(s)
CD28 Antigens , Interleukin-15 , CD8-Positive T-Lymphocytes , Humans , Interleukins , Leukocytes, Mononuclear , Lymphocyte Activation , T-Lymphocyte Subsets
17.
J Immunol Res ; 2021: 9921466, 2021.
Article in English | MEDLINE | ID: mdl-34368371

ABSTRACT

BACKGROUND: Clear cell renal cell carcinoma (ccRCC) is the most common subtype of kidney cancer whose incidence and mortality rate are increasing. Identifying immune-related lncRNAs and constructing a model would probably provide new insights into biomarkers and immunotherapy for ccRCC and aid in the prognosis prediction. METHODS: The transcription profile and clinical information were obtained from The Cancer Genome Atlas (TCGA). Immune-related gene sets and transcription factor genes were downloaded from GSEA website and Cistrome database, respectively. Tumor samples were divided into the training set and the testing set. Immune-related differentially expressed lncRNAs (IDElncRNAs) were identified from the whole set. Univariate Cox regression, LASSO, and stepwise multivariate Cox regression were performed to screen out ideal prognostic IDElncRNAs (PIDElncRNAs) from the training set and develop a multi-lncRNA signature. RESULTS: Consequently, AC012236.1, AC078778.1, AC078950.1, AC087318.1, and AC092535.4 were screened to be significantly related to the prognosis of ccRCC patients, which were used to establish the five-lncRNA signature. Its wide diagnostic capacity was revealed in different subgroups of clinical parameters. Then AJCC-stage, Fuhrman-grade, pharmaceutical, age, and risk score regarded as independent prognostic factors were integrated to construct a nomogram, whose good performance in predicting 3-, 5-, and 7-year overall survival of ccRCC patients was revealed by time-dependent ROC curves and verified by the testing sets and ICGC dataset. The calibration plots showed great agreement of the nomogram between predicted and observed outcomes. Functional enrichment analysis showed the signature and each lncRNA were mainly enriched in pathways associated with regulation of immune response. Several kinds of tumor-infiltrating immune cells like regulatory T cells, T follicular helper cells, CD8+ T cells, resting mast cells, and naïve B cells were significantly correlated with the signature. CONCLUSION: Therefore, we constructed a five-lncRNA model integrating clinical parameters to help predict the prognosis of ccRCC patients. The five immune-related lncRNAs could potentially be therapeutic targets for immunotherapy in ccRCC in the future.


Subject(s)
Biomarkers, Tumor , Carcinoma, Renal Cell/etiology , Carcinoma, Renal Cell/mortality , Immunity/genetics , Kidney Neoplasms/etiology , Kidney Neoplasms/mortality , RNA, Long Noncoding/genetics , Computational Biology/methods , Databases, Genetic , Disease Susceptibility , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Humans , Kaplan-Meier Estimate , Molecular Sequence Annotation , Prognosis , Proportional Hazards Models , Transcription Factors/genetics
18.
Front Immunol ; 12: 653358, 2021.
Article in English | MEDLINE | ID: mdl-33746989

ABSTRACT

Immune checkpoint inhibitors (ICIs) are currently a first-line treatment option for clear cell renal cell carcinoma (ccRCC). However, recent clinical studies have shown that a large number of patients do not respond to ICIs. Moreover, only a few patients achieve a stable and durable response even with combination therapy based on ICIs. Available studies have concluded that the response to immunotherapy and targeted therapy in patients with ccRCC is affected by the tumor immune microenvironment (TIME), which can be manipulated by targeted therapy and tumor genomic characteristics. Therefore, an in-depth understanding of the dynamic nature of the TIME is important for improving the efficacy of immunotherapy or combination therapy in patients with advanced ccRCC. Here, we explore the possible mechanisms by which the TIME affects the efficacy of immunotherapy and targeted therapy, as well as the factors that drive dynamic changes in the TIME in ccRCC, including the immunomodulatory effect of targeted therapy and genomic changes. We also describe the progress on novel therapeutic modalities for advanced ccRCC based on the TIME. Overall, this review provides valuable information on the optimization of combination therapy and development of individualized therapy for advanced ccRCC.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Carcinoma, Renal Cell/drug therapy , Immune Checkpoint Inhibitors/therapeutic use , Kidney Neoplasms/drug therapy , Precision Medicine/methods , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Biomarkers, Tumor/antagonists & inhibitors , Biomarkers, Tumor/genetics , Carcinoma, Renal Cell/genetics , Carcinoma, Renal Cell/immunology , Carcinoma, Renal Cell/mortality , Drug Resistance, Neoplasm/drug effects , Drug Resistance, Neoplasm/genetics , Gene Expression Regulation, Neoplastic/drug effects , Gene Expression Regulation, Neoplastic/immunology , Humans , Immune Checkpoint Inhibitors/pharmacology , Kidney Neoplasms/genetics , Kidney Neoplasms/immunology , Kidney Neoplasms/mortality , Molecular Targeted Therapy/methods , Progression-Free Survival , Randomized Controlled Trials as Topic , Tumor Microenvironment/drug effects , Tumor Microenvironment/genetics , Tumor Microenvironment/immunology
19.
J Cell Mol Med ; 25(6): 3006-3018, 2021 03.
Article in English | MEDLINE | ID: mdl-33580614

ABSTRACT

S100 calcium-binding protein A (S100A) family members regulate multiple biological functions related to pancreatic cancer (PC) progression and metastasis. However, the prognostic and oncologic values of S100A family have not been systematically investigated in PC. In the present study, the mRNA expression and potential functions of S100A family were investigated by bioinformatic analysis. Our results demonstrated that overexpression of S100A2, S100A6, S100A10, S100A11, S100A14 and S100A16 was significantly associated with higher T stage, advanced histologic grade and worse prognosis in PC. Besides, one CpG of S100A2, three CpG of S100A6, four CpG of S100A10, four CpG of S100A11, two CpG of S100A14 and five CpG of S100A16 were negatively associated with corresponding S100A family members expression and positively associated with overall survival (OS). The signature based on four CpGs showed good prediction ability of OS. Besides, S100A2 overexpression took part in the regulation of mitotic cell cycle, ECM-receptor interaction and HIF-1α transcription factor network. Overexpression of S100A6, S100A10, S100A11, S100A14 and S100A16 may impair the infiltration and cytolytic activity of CD8+ T cells through focal adhesion-Ras-stimulating signalling pathway in PC. Overall, this study explores the multiple prognostic values and oncologic functions of the S100A family in PC.


Subject(s)
Biomarkers, Tumor , Immunomodulation/genetics , Multigene Family , Pancreatic Neoplasms/etiology , Pancreatic Neoplasms/mortality , S100 Proteins/genetics , Computational Biology/methods , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Humans , Kaplan-Meier Estimate , Neoplasm Grading , Neoplasm Staging , Pancreatic Neoplasms/pathology , Prognosis , Proportional Hazards Models , S100 Proteins/metabolism , Signal Transduction , Transcriptome
20.
Biosci Rep ; 41(2)2021 02 26.
Article in English | MEDLINE | ID: mdl-33409535

ABSTRACT

BACKGROUND: Ge-Gen-Qin-Lian Decoction (GGQLD), a traditional Chinese medicine (TCM) formula, has been widely used for ulcerative colitis (UC) in China, but the pharmacological mechanisms remain unclear. This research was designed to clarify the underlying pharmacological mechanism of GGQLD against UC. METHOD: In this research, a GGQLD-compound-target-UC network was constructed based on public databases to clarify the relationship between active compounds in GGQLD and potential targets. Gene ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) pathway enrichment analyses were performed to investigate biological functions associated with potential targets. A protein-protein interaction network was constructed to screen and evaluate hub genes and key active ingredients. Molecular docking was used to verify the activities of binding between hub targets and ingredients. RESULTS: Finally, 83 potential therapeutic targets and 118 corresponding active ingredients were obtained by network pharmacology. Quercetin, kaempferol, wogonin, baicalein, and naringenin were identified as potential candidate ingredients. GO and KEGG enrichment analyses revealed that GGQLD had anti-inflammatory, antioxidative, and immunomodulatory effects. The effect of GGQLD on UC might be achieved by regulating the balance of cytokines (e.g., IL-6, TNF, IL-1ß, CXCL8, CCL2) in the immune system and inflammation-related pathways, such as the IL-17 pathway and the Th17 cell differentiation pathway. In addition, molecular docking results demonstrated that the main active ingredient, quercetin, exhibited good affinity to hub targets. CONCLUSION: This research fully reflects the multicomponent and multitarget characteristics of GGQLD in the treatment of UC. Furthermore, the present study provided new insight into the mechanisms of GGQLD against UC.


Subject(s)
Colitis, Ulcerative/drug therapy , Medicine, Chinese Traditional , Databases, Chemical , Gene Ontology , Humans , Molecular Docking Simulation
SELECTION OF CITATIONS
SEARCH DETAIL
...