Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Lett ; 49(1): 29-32, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-38134144

ABSTRACT

Phase noise is one of the main obstacles to achieve high spatial resolution, high precision, and large measurement range in φ-OFDR. Here, we proposed a complex-domain denoising method to achieve unwrapping of phase signals. In this method, the wrapped phase was used to construct a complex signal, and then both real and imaginary parts are denoised by using a wavelet packet. The two sets of denoised signals are reconstructed into a complex form, allowing to obtain an unwrapped phase. Additionally, the spatial position correction algorithm addresses the phase decoherence from strain accumulation. Finally, a high numerical aperture optical fiber is used to enhance the Rayleigh scattering intensity by 15 dB. The comprehensive approach yields remarkable results: a sensing resolution of 0.89 mm, a root mean square error of 1.5 µÎµ, and a maximum strain sensing capability of 2050 µÎµ.

2.
Sensors (Basel) ; 22(12)2022 Jun 14.
Article in English | MEDLINE | ID: mdl-35746262

ABSTRACT

Liquid-level sensors are required in modern industrial and medical fields. Optical liquid-level sensors can solve the safety problems of traditional electrical sensors, which have attracted extensive attention in both academia and industry. We propose a distributed liquid-level sensor based on optical frequency domain reflectometry and with no-core fiber. The sensing mechanism uses optical frequency domain reflectometry to capture the strong reflection of the evanescent field of the no-core fiber at the liquid-air interface. The experimental results show that the proposed method can achieve a high resolution of 0.1 mm, stability of ±15 µm, a relatively large measurement range of 175 mm, and a high signal-to-noise ratio of 30 dB. The sensing length can be extended to 1.25 m with a weakened signal-to-noise ratio of 10 dB. The proposed method has broad development prospects in the field of intelligent industry and extreme environments.

3.
Opt Express ; 28(13): 18829-18842, 2020 Jun 22.
Article in English | MEDLINE | ID: mdl-32672174

ABSTRACT

Polarization maintaining (PM) fibers can be used for distributed force/pressure sensing in which the birefringence axis of the PM fiber should preferably be oriented 45° from the direction of the force/pressure for the maximum sensitivity. However, it is a challenge to achieve such 45° axis orientation for a long length of PM fiber in practice. In this paper, we report the development of what we believe the first equipment and process for making PM fiber based sensing tapes, capable of automatically adjusting the fiber axis orientation 45° with respect to the tape surface. In particular, we develop a machine vision system with the ability of continuously determining fiber axis orientation in real time as the fiber passes by and feeding back the orientation information to a fiber rotation apparatus to automatically adjust its orientation before fixing the fiber on a transparent PET tape with UV epoxy. We show the results of a successfully fabricated 70-m-long PM fiber sensing tape achieving an axis orientation accuracy of 45 ± 3° throughout the whole length of the tape, which is further validated with a distributed polarization crosstalk analyzer (DPXA). Finally, we demonstrate distributed transversal load sensing with 14 force applying weights randomly distributed along the sensing tape using the DPXA, with a polarization crosstalk measurement uniformity of 0.62 dB (standard deviation) using the same applied weight of 100 grams. The same sensing tape can also be used for pressure sensing with properly designed fixtures.

4.
Eur Spine J ; 29(5): 1147-1158, 2020 05.
Article in English | MEDLINE | ID: mdl-32200495

ABSTRACT

PURPOSE: To evaluate the safety and efficacy of a system aiming to correct scoliosis called "electromagnetically controlled shape-memory alloy rods" (EC-SMAR) used in a rabbit model. METHODS: We heat-treated shape-memory alloy (SMA) rods to achieve a transition temperature between 34 and 47 °C and a C-shape austenite phase. We then developed a water-cooled generator capable of generating an alternating magnetic field (100 kHz) for induction heating. We next studied the efficacy of this system in vitro and determined some parameters prior to proceeding with animal experiments. We then employed a rabbit model, in which we fixed a straight rod along the spinous processes intraoperatively, and conducted induction heating postoperatively every 4 days for 1 month, while performing periodic X-ray assessments. RESULTS: Significant kyphotic deformations with Cobb angles of about 45° (p < 0.01) were created in five rabbits, and no complications occurred throughout the experiment. The rabbits are still very much alive and do not show any signs of discomfort. CONCLUSIONS: This is the first system that can modulate spinal deformation in a gradual, contactless, noninvasive manner through electromagnetic induction heating applied to SMA alloy rods. Although this study dealt with healthy spines, it provides promising evidence that this device also has the capacity to correct human kyphosis and even scoliosis in the future. These slides can be retrieved under Electronic Supplementary Material.


Subject(s)
Scoliosis , Shape Memory Alloys , Alloys , Animals , Nickel , Rabbits , Scoliosis/surgery , Spine , Titanium
SELECTION OF CITATIONS
SEARCH DETAIL
...