Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Vaccines (Basel) ; 11(5)2023 May 08.
Article in English | MEDLINE | ID: mdl-37243063

ABSTRACT

Live attenuated vaccine is one of the most effective vaccines against flavivirus. Recently, site-directed mutation of the flavivirus genome using reverse genetics techniques has been used for the rapid development of attenuated vaccines. However, this technique relies on basic research of critical virulence loci of the virus. To screen the attenuated sites in dengue virus, a total of eleven dengue virus type four mutant strains with deletion of N-glycosylation sites in the NS1 protein were designed and constructed. Ten of them (except for the N207-del mutant strain) were successfully rescued. Out of the ten strains, one mutant strain (N130del+207-209QQA) was found to have significantly reduced virulence through neurovirulence assay in suckling mice, but was genetically unstable. Further purification using the plaque purification assay yielded a genetically stable attenuated strain #11-puri9 with mutations of K129T, N130K, N207Q, and T209A in the NS1 protein and E99D in the NS2A protein. Identifying the virulence loci by constructing revertant mutant and chimeric viruses revealed that five amino acid adaptive mutations in the dengue virus type four non-structural proteins NS1 and NS2A dramatically affected its neurovirulence and could be used in constructing attenuated dengue chimeric viruses. Our study is the first to obtain an attenuated dengue virus strain through the deletion of amino acid residues at the N-glycosylation site, providing a theoretical basis for understanding the pathogenesis of the dengue virus and developing its live attenuated vaccines.

2.
Front Immunol ; 14: 1142394, 2023.
Article in English | MEDLINE | ID: mdl-37006275

ABSTRACT

The ongoing evolution of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2 or 2019-nCoV) variants has been associated with the transmission and pathogenicity of COVID-19. Therefore, exploring the optimal immunisation strategy to improve the broad-spectrum cross-protection ability of COVID-19 vaccines is of great significance. Herein, we assessed different heterologous prime-boost strategies with chimpanzee adenovirus vector-based COVID-19 vaccines plus Wuhan-Hu-1 (WH-1) strain (AdW) and Beta variant (AdB) and mRNA-based COVID-19 vaccines plus WH-1 strain (ARW) and Omicron (B.1.1.529) variant (ARO) in 6-week-old female BALB/c mice. AdW and AdB were administered intramuscularly or intranasally, while ARW and ARO were administered intramuscularly. Intranasal or intramuscular vaccination with AdB followed by ARO booster exhibited the highest levels of cross-reactive IgG, pseudovirus-neutralising antibody (PNAb) responses, and angiotensin-converting enzyme-2 (ACE2)-binding inhibition rates against different 2019-nCoV variants among all vaccination groups. Moreover, intranasal AdB vaccination followed by ARO induced higher levels of IgA and neutralising antibody responses against live 2019-nCoV than intramuscular AdB vaccination followed by ARO. A single dose of AdB administered intranasally or intramuscularly induced broader cross-NAb responses than AdW. Th1-biased cellular immune response was induced in all vaccination groups. Intramuscular vaccination-only groups exhibited higher levels of Th1 cytokines than intranasal vaccination-only and intranasal vaccination-containing groups. However, no obvious differences were found in the levels of Th2 cytokines between the control and all vaccination groups. Our findings provide a basis for exploring vaccination strategies against different 2019-nCoV variants to achieve high broad-spectrum immune efficacy.


Subject(s)
COVID-19 , Viral Vaccines , Female , Humans , Animals , Mice , COVID-19 Vaccines , SARS-CoV-2 , COVID-19/prevention & control , RNA, Messenger , Immunization , Vaccination , Antibodies, Neutralizing , Immunity, Cellular
3.
Front Immunol ; 14: 1129118, 2023.
Article in English | MEDLINE | ID: mdl-37006310

ABSTRACT

Chikungunya fever (CHIKF) has spread to more than 100 countries worldwide, with frequent outbreaks in Europe and the Americas in recent years. Despite the relatively low lethality of infection, patients can suffer from long-term sequelae. Until now, no available vaccines have been approved for use; however, increasing attention is being paid to the development of vaccines against chikungunya virus (CHIKV), and the World Health Organization has included vaccine development in the initial blueprint deliverables. Here, we developed an mRNA vaccine using the nucleotide sequence encoding structural proteins of CHIKV. And immunogenicity was evaluated by neutralization assay, Enzyme-linked immunospot assay and Intracellular cytokine staining. The results showed that the encoded proteins elicited high levels of neutralizing antibody titers and T cell-mediated cellular immune responses in mice. Moreover, compared with the wild-type vaccine, the codon-optimized vaccine elicited robust CD8+ T-cell responses and mild neutralizing antibody titers. In addition, higher levels of neutralizing antibody titers and T-cell immune responses were obtained using a homologous booster mRNA vaccine regimen of three different homologous or heterologous booster immunization strategies. Thus, this study provides assessment data to develop vaccine candidates and explore the effectiveness of the prime-boost approach.


Subject(s)
Chikungunya Fever , Chikungunya virus , Viral Vaccines , Animals , Mice , Chikungunya virus/genetics , Viral Vaccines/genetics , Antibodies, Viral , Antibodies, Neutralizing
4.
Emerg Microbes Infect ; 11(1): 1890-1899, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35775819

ABSTRACT

The efficacy of many coronavirus disease 2019 (COVID-19) vaccines has been shown to decrease to varying extents against new severe acute respiratory syndrome coronavirus 2 variants, which are responsible for the continuing COVID-19 pandemic. Combining intramuscular and intranasal vaccination routes is a promising approach for achieving more potent immune responses. We evaluated the immunogenicity of prime-boost protocols with a chimpanzee adenovirus serotype 68 vector-based vaccine, ChAdTS-S, administered via both intranasal and intramuscular routes in BALB/c mice. Intramuscular priming followed by an intranasal booster elicited the highest levels of IgG, IgA, and pseudovirus neutralizing antibody titres among all the protocols tested at day 42 after prime immunization compared with the intranasal priming/intramuscular booster and prime-boost protocols using only one route. In addition, intramuscular priming followed by an intranasal booster induced high T-cell responses, measured using the IFN-γ ELISpot assay, that were similar to those observed upon intramuscular vaccination. All ChAdTS-S vaccination groups induced Th1-skewing of the T-cell response according to intracellular cytokine staining and Meso Scale Discovery cytokine profiling assays on day 56 after priming. This study provides reference data for assessing vaccination schemes of adenovirus-based COVID-19 vaccines with high immune efficacy.


Subject(s)
COVID-19 Vaccines , COVID-19 , Adenoviridae/genetics , Animals , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/prevention & control , COVID-19 Vaccines/immunology , Cytokines , Immunity, Cellular , Immunity, Humoral , Immunization, Secondary , Mice , Mice, Inbred BALB C , Pan troglodytes , SARS-CoV-2 , Vaccination
5.
Viruses ; 14(6)2022 06 09.
Article in English | MEDLINE | ID: mdl-35746724

ABSTRACT

Since the first isolation in 1943, the dengue virus (DENV) has spread throughout the world, but effective antiviral drugs or vaccines are still not available. To provide a more stable reporter DENV for vaccine development and antiviral drug screening, we constructed a reporter DENV containing the NanoLuc reporter gene, which was inserted into the 5' untranslated region and capsid junction region, enabling rapid virus rescue by in vitro ligation. In addition, we established a live imaging mouse model and found that the reporter virus maintained the neurovirulence of prototype DENV before engineering. DENV-4 exhibited dramatically increased neurovirulence following a glycosylation site-defective mutation in the envelope protein. Significant mice mortality with neurological onset symptoms was observed after intracranial infection of wild-type (WT) mice, thus providing a visualization tool for DENV virulence assessment. Using this model, DENV was detected in the intestinal tissues of WT mice after infection, suggesting that intestinal lymphoid tissues play an essential role in DENV pathogenesis.


Subject(s)
Dengue Virus , Dengue , Animals , Antiviral Agents/pharmacology , Genes, Reporter , Luciferases/genetics , Mice
6.
MedComm (2020) ; 3(2): e117, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35415706

ABSTRACT

The Japanese encephalitis (JE) live-attenuated vaccine SA14-14-2 and the chimeric vaccine IMOJEV (JE-CV) are two kinds of vaccines available for use worldwide. JE-CV was previously known as ChimeriVax-JE, that consists of yellow fever vaccine 17D (YFV-17D) from which the structural genes (prM/E) have been replaced with those of SA14-14-2. This study aimed to investigate the neutralizing antibody, protection efficacy, and specific T-cell response elicited by both vaccines in mice. The neutralizing antibodies produced by JE-CV were slightly lower than those produced by SA14-14-2, but the protection conferred by JE-CV was considerably lower in the low vaccine dose immunization group. Furthermore, the JE-CV did not induce a specific T-cell response against JEV NS3, while it did induce a potent antigen-specific T-cell response against the viral backbone vaccine YFV. In conclusion, this study is the first detailed investigation of the cellular immune response to the two vaccines. Enzyme-linked immunospot (ELISPOT) and flow staining suggest a more potent specific T-cell response against the JEV antigen was elicited in mice immunized with SA14-14-2 but not JE-CV. Using heterologous flaviviruses as a live-attenuated vaccine backbone may unlikely generate an optimal T-cell response against the vaccine strain virus and might affect the protective efficacy.

7.
Signal Transduct Target Ther ; 7(1): 94, 2022 03 23.
Article in English | MEDLINE | ID: mdl-35322018

ABSTRACT

To date, the coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has determined 399,600,607 cases and 5,757,562 deaths worldwide. COVID-19 is a serious threat to human health globally. The World Health Organization (WHO) has declared COVID-19 pandemic a major public health emergency. Vaccination is the most effective and economical intervention for controlling the spread of epidemics, and consequently saving lives and protecting the health of the population. Various techniques have been employed in the development of COVID-19 vaccines. Among these, the COVID-19 messenger RNA (mRNA) vaccine has been drawing increasing attention owing to its great application prospects and advantages, which include short development cycle, easy industrialization, simple production process, flexibility to respond to new variants, and the capacity to induce better immune response. This review summarizes current knowledge on the structural characteristics, antigen design strategies, delivery systems, industrialization potential, quality control, latest clinical trials and real-world data of COVID-19 mRNA vaccines as well as mRNA technology. Current challenges and future directions in the development of preventive mRNA vaccines for major infectious diseases are also discussed.


Subject(s)
COVID-19 Vaccines , COVID-19 , COVID-19/prevention & control , COVID-19 Vaccines/genetics , Humans , Pandemics/prevention & control , RNA, Messenger/genetics , SARS-CoV-2/genetics , Vaccines, Synthetic , mRNA Vaccines
8.
Sensors (Basel) ; 13(11): 14918-53, 2013 Nov 01.
Article in English | MEDLINE | ID: mdl-24189333

ABSTRACT

Wearable and accompanied sensors and devices are increasingly being used for user activity recognition. However, typical GPS-based and accelerometer-based (ACC) methods face three main challenges: a low recognition accuracy; a coarse recognition capability, i.e., they cannot recognise both human posture (during travelling) and transportation mode simultaneously, and a relatively high computational complexity. Here, a new GPS and Foot-Force (GPS + FF) sensor method is proposed to overcome these challenges that leverages a set of wearable FF sensors in combination with GPS, e.g., in a mobile phone. User mobility activities that can be recognised include both daily user postures and common transportation modes: sitting, standing, walking, cycling, bus passenger, car passenger (including private cars and taxis) and car driver. The novelty of this work is that our approach provides a more comprehensive recognition capability in terms of reliably recognising both human posture and transportation mode simultaneously during travel. In addition, by comparing the new GPS + FF method with both an ACC method (62% accuracy) and a GPS + ACC based method (70% accuracy) as baseline methods, it obtains a higher accuracy (95%) with less computational complexity, when tested on a dataset obtained from ten individuals.


Subject(s)
Accelerometry/instrumentation , Foot/physiology , Geographic Information Systems/instrumentation , Monitoring, Ambulatory/instrumentation , Walking/physiology , Adult , Equipment Design , Female , Humans , Male , Middle Aged , Monitoring, Ambulatory/methods , Walking/classification
SELECTION OF CITATIONS
SEARCH DETAIL
...