Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Biol Macromol ; 258(Pt 1): 128815, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38114010

ABSTRACT

First-line drugs for peptic ulcer (PU) treatment are typically limited by poor targeting and adverse effects associated with long-term use. Despite recent advancements in novel therapeutic approaches for PU, the development of sustained-release delivery systems tailored to specific pathological characteristics remains challenging. Persistent inflammation, particularly gastric inflammatory microenvironment imbalance, characterizes the PU. In this study, we prepared an in situ gel composed of sodium alginate, deacetylated gellan gum, calcium citrate, and Bletilla striata polysaccharide (BSP) to achieve sustained release of BSP. The BSP in situ gel demonstrated favorable fluidity in vitro and completed self-assembly in vivo in response to the acidic milieu at a pH of 1.5. Furthermore, the shear, extrusion, and deformation properties increased by 26.4 %, 103.7 %, and 46.3 %, respectively, with long-term gastric retention (4 h) and mucosal adaptation. Animal experiments confirmed that the BSP in situ gel could attenuate necrotic injury and inflammatory cell infiltration, maintain mucosal barrier integrity, regulate cytokine imbalance and inflammation-associated hyperapoptosis, thus effectively alleviate the inflammatory microenvironmental imbalance in PU without significant side effects. Overall, our findings demonstrated that the BSP in situ gel is a promising therapeutic strategy for PU and opens avenues for developing self-assembled formulations targeting the pathological features of PUs.


Subject(s)
Orchidaceae , Peptic Ulcer , Animals , Alginates/chemistry , Gastric Acid , Polysaccharides/chemistry , Ethanol , Inflammation , Orchidaceae/chemistry
2.
Ann Transl Med ; 10(10): 545, 2022 May.
Article in English | MEDLINE | ID: mdl-35722407

ABSTRACT

Background: The coronavirus disease 2019 (COVID-19) has forced accelerated optimization of Emergency Department (ED) process, and simulation tools offer an alternative approach to strategic assessment and selection. Methods: Field research and case analysis methods were used to obtain the treatment process and medical records information from the ED of a general hospital. Minitab was used for analysis of the measurement system, and Arena was applied for simulation modelling. We established a framework for the triage protocol of ordinary and quarantined patients, analysed bottlenecks in the treatment time of the hospital's ED, and proposed an optimised management strategy. Results: The computed tomography (CT) pre-scheduling strategy simulation results demonstrated that longer CT room preparation times for quarantined people before their arrival (Tp) resulted in reduced CT scan and waiting times for quarantined patients, but these times were longer for ordinary patients. The nucleic acid priority strategy simulation results demonstrated that when the average daily number of ordinary patients (λc) was relatively stable, the hospital could guide ordinary patients to perform nucleic acid testing first followed by CT testing. However, when λc fluctuated greatly, the hospital could appropriately reduce the proportion of preferential nucleic acid testing. Furthermore, when λc was overloaded, the nucleic acid priority strategy showed no advantages. The joint analysis results demonstrated that the optimal strategy selection was significantly affected by the severity of the epidemic. The nucleic acid detection sample size optimisation strategy demonstrated that optimizing the sample size of each batch according to the number of patients could effectively reduce the waiting times for nucleic acid testing (Tn). Conclusions: Simulation tools are an alternative method for strategic evaluation and selection that do not require external factors.

SELECTION OF CITATIONS
SEARCH DETAIL
...