Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Fundam Res ; 4(3): 570-574, 2024 May.
Article in English | MEDLINE | ID: mdl-38933200

ABSTRACT

Single-walled carbon nanotubes (SWCNTs) present excellent electronic and mechanical properties desired in wearable and flexible devices. The preparation of SWCNT films is the first step for fabricating various devices. This work developed a scalable and feasible method to assemble SWCNT thin films on water surfaces based on Marangoni flow induced by surface tension gradient. The films possess a large area of 40 cm × 30 cm (extensible), a tunable thickness of 15∼150 nm, a high transparency of up to 96%, and a decent conductivity. They are ready to be directly transferred to various substrates, including flexible ones. Flexible strain sensors were fabricated with the films on flexible substrates. These sensors worked with high sensitivity and repeatability. By realizing multi-functional human motion sensing, including responding to voices, monitoring artery pulses, and detecting knuckle and muscle actions, the assembled SWCNT films demonstrated the potential for application in smart devices.

2.
Mater Horiz ; 10(11): 5185-5191, 2023 Oct 30.
Article in English | MEDLINE | ID: mdl-37724683

ABSTRACT

Single-walled carbon nanotubes (SWCNTs) have been attracting extensive attention due to their excellent properties. We have developed a strategy of using coal to synthesize SWCNTs for high performance field-effect transistors (FETs). The high-quality SWCNTs were synthesized by laser ablation using only coal as the carbon source and Co-Ni as the catalyst. We show that coal is a carbon source superior to graphite with higher yield and better selectivity toward SWCNTs with smaller diameters. Without any pre-purification, the as-prepared SWCNTs were directly sorted based on their conductivity and diameter using either aqueous two-phase extraction or organic phase extraction with PCz (poly[9-(1-octylonoyl)-9H-carbazole-2,7-diyl]). The semiconducting SWCNTs sorted by one-step PCz extraction were used to fabricate thin film FETs. The transformation of coal into FETs (and further integrated circuits) demonstrates an efficient way of utilizing natural resources and a marvelous example in green carbon technology. Considering its short steps and high feasibility, it presents great potential in future practical applications not limited to electronics.

3.
J Agric Food Chem ; 71(21): 8192-8202, 2023 May 31.
Article in English | MEDLINE | ID: mdl-37204063

ABSTRACT

Short-chain chlorinated paraffins (SCCPs) are novel toxicants in food and are reported to possess neurotoxicity. Here, we investigated the mechanism of SCCP-induced astrocyte activation and neuroinflammation. SCCP gavage induced astrocyte activation and neuronal cell death with the changes of gut microbiome and metabolites. Antibiotic cocktail administration to deplete the gut microbiome ameliorated the astrocyte activation and inflammation induced by SCCPs. In fecal microbiota transplantation (FMT) assays, mice that received transplanted gut microbiome from SCCP-treated mice showed increased astrocyte activation and elevated inflammatory response. In addition, SCCP exposure promotes zonulin expression and tight junction injury, and antibiotic cocktail administration inhibited that in the intestinal tract. Increased zonulin and tight junction injury were also observed in SCCPs_FMT mice. The zonulin inhibition protected the tight junction in the intestinal tract from SCCP exposure and suppressed astrocyte activation. In summary, this study proposes a novel possibility for SCCP-induced astrocyte activation and neurotoxicity by the gut microbiome-mediated zonulin expression and tight junction.


Subject(s)
Gastrointestinal Microbiome , Hydrocarbons, Chlorinated , Animals , Mice , Paraffin , Up-Regulation , Astrocytes , Tight Junctions , Environmental Monitoring , China
4.
Plants (Basel) ; 12(4)2023 Feb 14.
Article in English | MEDLINE | ID: mdl-36840198

ABSTRACT

Nitrogen (N) is an essential macronutrient for plant function and growth and a key component of amino acids, which form the building blocks of plant proteins and enzymes. However, misuse and overuse of N can have many negative impacts on the ecosystem, such as reducing soil exchangeable base cations (BCs) and causing soil acidification. In this research, we evaluated clonal Chinese fir (Cunninghamia lanceolata (Lamb.) Hook) seedlings grown with exponentially increasing N fertilization (0, 0.5, 1, 2 g N seedling-1) for a 100-day trial in a greenhouse. The growth of seedlings, their nutrient contents, and soil exchangeable cations were measured. We found that N addition significantly increased plant growth and N content but decreased phosphorous (P) and potassium (K) contents in plant seedlings. The high nitrogen (2 g N seedling-1) treated seedlings showed a negative effect on growth, indicating that excessive nitrogen application caused damage to the seedlings. Soil pH, soil exchangeable base cations (BCs), soil total exchangeable bases (TEB), soil cation exchange capacity (CEC), and soil base saturation (BS) significantly decreased following N application. Our results implied that exponential fertilization resulted in soil acidification and degradation of soil capacity for supplying nutrient cations to the soil solution for plant uptake. In addition, the analysis of plants and BCs revealed that Na+ is an important base cation for BCs and for plant growth in nitrogen-induced acidified soils. Our results provide scientific insights for nitrogen application in seedling cultivation in soils and for further studies on the relationship between BCs and plant growth to result in high-quality seedlings while minimizing fertilizer input and mitigating potential soil pollution.

5.
Ecotoxicol Environ Saf ; 248: 114268, 2022 Dec 15.
Article in English | MEDLINE | ID: mdl-36375367

ABSTRACT

In the last few decades, short-chain chlorinated paraffins (SCCPs) have become the most heavily produced monomeric organohalogen compounds, and have been reported to induce multiple organ toxicity. However, the effects of SCCPs on the central nervous system are unknown. In the present study, we show that SCCP exposure induced astrocyte proliferation and increased the expression of two critical markers of astrocyte activation, glial fibrillary acidic protein and inducible nitric oxide synthase, in vivo and in vitro. SCCP exposure also increased inflammatory factory gene expression. Moreover, SCCP treatment triggered Janus kinase 2 (JAK2)/signal transducer and activator of transcription 3 (STAT3) signalling, as shown by increased phosphorylation and STAT3 translocation to the nucleus. Both JAK2 and STAT3 inhibition effectively attenuated SCCP-induced astrocyte activation. Finally, JAK2 inhibition significantly rescued STAT3 phosphorylation and nuclear translocation. Taken together, JAK2/STAT3 pathway activation contributed to SCCP-induced astrocyte activation. These data will help elucidate the molecular mechanism underlying SCCP-induced neurotoxicity.


Subject(s)
Janus Kinase 2 , STAT3 Transcription Factor , Janus Kinase 2/metabolism , STAT3 Transcription Factor/metabolism , Paraffin , Astrocytes , Signal Transduction
6.
ACS Cent Sci ; 8(11): 1490-1505, 2022 Nov 23.
Article in English | MEDLINE | ID: mdl-36439305

ABSTRACT

Single-walled carbon nanotubes (SWCNTs) are of particular interest as channel materials for field-effect transistors due to their unique structure and excellent properties. The controlled preparation of SWCNTs that meet the requirement of semiconducting and chiral purity, high density, and good alignment for high-performance electronics has become a key challenge in this field. In this Outlook, we outline the efforts in the preparation of SWCNTs for electronics from three main aspects, structure-controlled growth, selective sorting, and solution assembly, and discuss the remaining challenges and opportunities. We expect that this Outlook can provide some ideas for addressing the existing challenges and inspire the development of SWCNT-based high-performance electronics.

7.
Front Public Health ; 10: 985127, 2022.
Article in English | MEDLINE | ID: mdl-36148349

ABSTRACT

Background: Epidemiological evidence on Urine metals and cognitive impairment in older individuals is sparse and limited. The goal of this study was to analyze if there was a link between urinary metal levels and cognitive performance in U.S. people aged 60 and up. Methods: The National Health and Nutrition Examination Survey (NHANES) data from 2011 to 2014 were utilized in this cross-sectional analysis. Memory function was quantified using the following methods: Established Consortium for Word Learning in Alzheimer's Disease (CERAD-WL) (immediate learning and recall and delayed recall), Animal Fluency Test (AFT), and Digit Symbol Substitution Test (DSST). An inductively coupled plasma mass spectrometry (ICP-MS) was used to estimate urine metal concentrations. The connection of Urine metals level with cognitive function was investigated employing binary logistic regression and restricted cubic spline models. Results: A total of 840 participants aged 60 years and over were enrolled in this study. After controlling for confounders, the association between cadmium, barium, cobalt, cesium, manganese, and thallium and poor cognitive performance showed significance in multiple logistic regression compared to the lowest quartile of metals. In the DSST test, the weighted multivariate adjusted ORs (95% CI) for cadmium in the highest quartile, barium and cesium in the third quartile were 2.444 (1.310-4.560), 0.412 (0.180-0.942) and 0.440 (0.198-0.979), respectively. There were L-shaped associations between urine cesium, barium, or manganese and low cognitive performance in DSST. Urine lead, molybdenum and uranium did not show any significant relationships with cognitive impairment, respectively, compared to the respective lowest quartile concentrations. Conclusion: The levels of barium (Ba), cobalt (Co), cesium (Cs), manganese (Mn), and thallium (Tl) in urine were found to be negatively related to the prevalence of impaired cognitive performance in our cross-sectional investigation. Higher cadmium (Cd) levels were associated with cognitive impairment.


Subject(s)
Cadmium , Uranium , Barium , Cadmium/urine , Cesium , Cobalt , Cognition , Cross-Sectional Studies , Humans , Manganese , Molybdenum , Nutrition Surveys , Thallium
8.
Nanoscale Adv ; 4(6): 1626-1631, 2022 Mar 15.
Article in English | MEDLINE | ID: mdl-36134377

ABSTRACT

Tungsten disulphide has attracted great research interest due to its layered structure as well as physical and chemical properties. A less common type of tungsten sulphide, WS3, has also been studied as an electrochemical catalyst, but its crystal structure remains unclear because it has only been prepared in the amorphous form. In this work, crystalline WS3 is synthesized with a desert-rose-like morphology through the sulphurization of WO3·0.33H2O in a solvothermal reaction. The composition of WS3 is confirmed by X-ray photoelectron spectroscopy measurements as well as thermogravimetric experiment. The crystalline WS3 also has a layered structure and is likely to belong to the trigonal crystal system. Its lattice parameters in the hexagonal description are 5.30 Å × 5.30 Å × 29.0 Å <90 ° × 90 ° × 120°>, which are determined by 3D electron diffraction and powder X-ray diffraction. The WS3 shows potential as catalyst for the electrochemical hydrogen evolution reaction. Our findings extend the family of layered tungsten sulphide materials.

9.
BMC Geriatr ; 22(1): 663, 2022 08 12.
Article in English | MEDLINE | ID: mdl-35962346

ABSTRACT

BACKGROUND: We have looked at antimony (Sb) as a new neurotoxin which causes neuronal apoptosis in animal studies. At the population level, however, there is no direct evidence for a relationship between Sb exposure and cognitive performance. METHOD: The study comprehensively assessed the correlation between urinary antimony levels and cognitive test scores in 631 creatinine-corrected older persons using data from the National Health and Nutrition Examination Survey (NHANES) from 2011 to 2014. RESULTS: Using logistic regression, the study looked at the prevalence of cognitive impairment at different levels of urine antimony concentrations and found that, after controlling for covariates, higher doses of urinary antimony were positively associated with cognitive function compared to controls, odds ratio (ORs) with 95% confidence interval (CI) were 0.409 (0.185-0.906) and 0.402 (0.186-0.871) respectively. Restricted cubic spline curves showed a non-linear and dose-specific correlation between urinary antimony and cognitive performance, with lower doses associated with better cognitive performance, while higher doses may be associated with cognitive impairment. CONCLUSIONS: Our data provide evidence for a correlation between Sb and cognitive function at the population level, although the specific mechanisms need to be investigated further.


Subject(s)
Antimony , Cognition , Antimony/adverse effects , Antimony/urine , Humans , Neuropsychological Tests , Nutrition Surveys , Odds Ratio
10.
ACS Nano ; 16(1): 1063-1071, 2022 Jan 25.
Article in English | MEDLINE | ID: mdl-34927412

ABSTRACT

Possessing excellent electronic and mechanical properties and great stability, single-walled carbon nanotubes (SWCNTs) are exceptionally attractive in fabricating flexible transparent conductive films. Doping is a key step to further enhance the conductivity of the SWCNT films and the reliable doping is highly needed. We developed a feasible strategy that uses solid acids such as phosphotungstic acid (PTA) to dope the SWCNT films stably relying on the nonvolatility of the dopants. The sheet resistance of the films was reduced to around a half of the original value meanwhile with no obvious change in transmittance. The doping effect maintained during a 700 days' observation. The excellent flexibility of the PTA-doped films was demonstrated by a bending test of 1000 cycles, during which the sheet resistance and transmittance was basically unaffected. The blue shifts of G band in the Raman spectra and the increase of work function measured by the Kelvin probe force microscopy both reveal the p-type doping of the films by PTA. The strong acidity of PTA plays a key role in the doping effect by increasing the redox potential of the ambient O2 and thus the Fermi level of the SWCNTs is brought down. The great feasibility and robustness of our doping strategy are desirable in the practical application of SWCNT-based flexible transparent conductive films. This strategy can be extended to the p-type doping of various CNT-based assemblies (such as sponges and forests) as well as other material families, expanding the application spectrum of polyacids.

11.
Materials (Basel) ; 12(20)2019 Oct 17.
Article in English | MEDLINE | ID: mdl-31627465

ABSTRACT

It is important to study the failure mechanism of concrete by observing the crack expansion and capturing key structures at the mesoscale. This manuscript proposed a method for efficiently identifying aggregate boundary information by X-ray computed tomography technology (CT) and a discrete element modeling method (DEM) for equivalent random polygon aggregates. This method overcomes the shortcomings of the Grain Based Model (GBM) which is impossible to establish a mesoscopic model with a large difference in grain radius. Through the above two methods, the CT slice images were processed in batches, and the numbers of edges, axial length, elongation of the aggregate were identified. The feasibility of the method was verified by the comparison between experimental and simulating results. Three mesoscopic models for different porosities were established. Based on aggregate statistics, this manuscript achieved the meso-model recovery to the maximum extent. The test results show that the crack appeared at the tip of the aggregate firstly, and then the broken boundary was applied in the direction of the applied load and around the pores. Finally, the crack was selectively expanded under the axial force. During the loading process, the minor principal stress was normally distributed. As the porosity and loading time increased, the heterogeneity increased.

12.
Natl Sci Rev ; 6(4): 758-766, 2019 Jul.
Article in English | MEDLINE | ID: mdl-34691931

ABSTRACT

Patterned materials on substrates are of great importance for a wide variety of applications. In solution-based approaches to material patterning, fluidic flow is inevitable. Here we demonstrate not only the importance of fluidic behavior but also the methodology of engineering the flow pattern to guide the material crystallization and assembly. We show by both experiment and simulation that substrate heating, which is generally used to accelerate evaporation, produces irregular complex vortexes. Instead, a top-heating-bottom-cooling (THBC) set-up offers an inverse temperature gradient and results in a single Marangoni vortex, which is desired for ordered nanomaterial patterning near the contact line. We then realize the fabrication of large-scale patterns of iodide perovskite crystals on different substrates under THBC conditions. We further demonstrate that harnessing the flow behavior is a general strategy with great feasibility to pattern various functional materials ranging from inorganic, organic, hybrid to biological categories on different substrates, presenting great potential for practical applications.

13.
Nanoscale ; 10(15): 6922-6927, 2018 Apr 19.
Article in English | MEDLINE | ID: mdl-29594289

ABSTRACT

Bimetallic catalysts play important roles in the selective growth of single-walled carbon nanotubes (SWNTs). Using the simple salts (NH4)6W7O24·6H2O and Co(CH3COO)2·4H2O as precursors, tungsten-cobalt catalysts were prepared. The catalysts were composed of W6Co7 intermetallic compounds and tungsten-dispersed cobalt. With the increase of the W/Co ratio in the precursors, the content of W6Co7 was increased. Because the W6Co7 intermetallic compound can enable the chirality specified growth of SWNTs, the selectivity of the resulting SWNTs is improved at a higher W/Co ratio. At a W/Co ratio of 6 : 4 and under optimized chemical vapor deposition conditions, we realized the direct growth of semiconducting SWNTs with the purity of ∼96%, in which ∼62% are (14, 4) tubes. Using salts as precursors to prepare tungsten-cobalt bimetallic catalysts is flexible and convenient. This offers an efficient pathway for the large-scale preparation of chirality enriched semiconducting SWNTs.

14.
ACS Nano ; 11(1): 186-193, 2017 01 24.
Article in English | MEDLINE | ID: mdl-28114760

ABSTRACT

Semiconducting single-walled carbon nanotubes (s-SWNTs) with diameters of 1.0-1.5 nm (with similar bandgap to crystalline silicon) are highly desired for nanoelectronics. Up to date, the highest reported content of s-SWNTs as-grown is ∼97%, which is still far below the daunting requirements of high-end applications. Herein, we report a feasible and green pathway to use H2O vapor to modulate the structure of the intermetallic W6Co7 nanocrystals. By using the resultant W6Co7 nanocatalysts with a high percentage of (1 0 10) planes as structural templates, we realized the direct growth of s-SWNT with the purity of ∼99%, in which ∼97% is (14,4) tubes (diameter 1.29 nm). H2O can also act as an environmentally friendly and facile etchant for eliminating metallic SWNTs, and the content of s-SWNTs was further improved to 99.8% and (14,4) tubes to 98.6%. High purity s-SWNTs with even bandgap determined by their uniform structure can be used for the exquisite applications in different fields.

SELECTION OF CITATIONS
SEARCH DETAIL
...