Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
BMC Cardiovasc Disord ; 24(1): 365, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39014329

ABSTRACT

BACKGROUND: M1 macrophages are closely associated with cardiac injury after myocardial infarction (MI). Increasing evidence shows that exosomes play a key role in pathophysiological regulation after MI, but the role of M1 macrophage-derived exosomes (M1-Exos) in myocardial regeneration remains unclear. In this study, we explored the impact of M1 macrophage-derived exosomes on cardiomyocytes regeneration in vitro and in vivo. METHODS: M0 macrophages were induced to differentiate into M1 macrophages with GM-CSF (50 ng/mL) and IFN-γ (20 ng/mL). Then M1-Exos were isolated and co-incubated with cardiomyocytes. Cardiomyocyte proliferation was detected by pH3 or ki67 staining. Quantitative real-time PCR (qPCR) was used to test the level of miR-155 in macrophages, macrophage-derived exosomes and exosome-treated cardiomyocytes. MI model was constructed and LV-miR-155 was injected around the infarct area, the proliferation of cardiomyocytes was counted by pH3 or ki67 staining. The downstream gene and pathway of miR-155 were predicted and verified by dual-luciferase reporter gene assay, qPCR and immunoblotting analysis. IL-6 (50 ng/mL) was added to cardiomyocytes transfected with miR-155 mimics, and the proliferation of cardiomyocytes was calculated by immunofluorescence. The protein expressions of IL-6R, p-JAK2 and p-STAT3 were detected by Western blot. RESULTS: The results showed that M1-Exos suppressed cardiomyocytes proliferation. Meanwhile, miR-155 was highly expressed in M1-Exos and transferred to cardiomyocytes. miR-155 inhibited the proliferation of cardiomyocytes and antagonized the pro-proliferation effect of interleukin 6 (IL-6). Furthermore, miR-155 targeted gene IL-6 receptor (IL-6R) and inhibited the Janus kinase 2(JAK)/Signal transducer and activator of transcription (STAT3) signaling pathway. CONCLUSION: M1-Exos inhibited cardiomyocyte proliferation by delivering miR-155 and inhibiting the IL-6R/JAK/STAT3 signaling pathway. This study provided new insight and potential treatment strategy for the regulation of myocardial regeneration and cardiac repair by macrophages.


Subject(s)
Cell Proliferation , Disease Models, Animal , Exosomes , Janus Kinase 2 , Macrophages , MicroRNAs , Myocardial Infarction , Myocytes, Cardiac , STAT3 Transcription Factor , Signal Transduction , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Myocytes, Cardiac/drug effects , MicroRNAs/metabolism , MicroRNAs/genetics , Exosomes/metabolism , Exosomes/transplantation , Exosomes/genetics , Animals , Cell Proliferation/drug effects , Macrophages/metabolism , STAT3 Transcription Factor/metabolism , STAT3 Transcription Factor/genetics , Myocardial Infarction/metabolism , Myocardial Infarction/pathology , Myocardial Infarction/physiopathology , Myocardial Infarction/genetics , Janus Kinase 2/metabolism , Male , Regeneration , Rats, Sprague-Dawley , Receptors, Interleukin-6/metabolism , Receptors, Interleukin-6/genetics , Cells, Cultured , Phosphorylation , Coculture Techniques , Mice, Inbred C57BL , Interleukin-6/metabolism
2.
Mol Neurobiol ; 2023 Nov 02.
Article in English | MEDLINE | ID: mdl-37917301

ABSTRACT

Microglia-mediated neuroinflammation plays a crucial role in the pathogenesis of Parkinson's disease (PD). Triggering receptor expressed on myeloid cells 2 (TREM2) confers strong neuroprotective effects in PD by regulating the phenotype of microglia. Recent studies suggest that TREM2 regulates high glucose-induced microglial inflammation through the NLRP3 signaling pathway. This study aimed to investigate the effect of TREM2 on NLRP3 inflammasome activation and neuroinflammation in PD. Mice were injected with AAV-TREM2-shRNA into both sides of the substantia nigra using a stereotactic injection method, followed by intraperitoneal injection of MPTP to establish chronic PD mouse model. Behavioral assessments including the pole test and rotarod test were conducted to evaluate the effects of TREM2 deficiency on MPTP-induced motor dysfunction. Immunohistochemistry of TREM2 and tyrosine hydroxylase (TH), immunohistochemistry and immunofluorescence Iba1, Western blot of NLRP3 inflammasome and its downstream inflammatory factors IL-1ß and IL-18, and the key pyroptosis factors GSDMD and GSDMD-N were performed to explore the effect of TREM2 on NLRP3 inflammasome and neuroinflammation. In an in vitro experiment, lentivirus was used to interfere with the expression of TREM2 in BV2 microglia, and then lipopolysaccharide (LPS) and adenopterin nucleoside triphosphate (ATP) were used to stimulate inflammation to construct a cellular inflammation model. The expression differences of NLRP3 inflammasome and its components were detected by qPCR and Western blot. In vivo, TREM2 knockdown aggravated the loss of dopaminergic neuron and the decline of motor function. After TREM2 knockdown, the number of activated microglia was significantly increased, and the expression of cleaved caspase-1, NLRP3 inflammasome, IL-1ß, GSDMD, and GSDMD-N was increased. In vitro, TREM2 knockdown aggravated the inflammatory response of BV2 cells stimulated by LPS and promoted the activation of NLRP3 inflammasome through the NF-κB pathway. In addition, TREM2 knockdown also promoted the expression of TLR4/MyD88, an upstream factor of the NF-κB pathway. Our vivo and vitro data showed that TREM2 knockdown promoted NLRP3 inflammasome activation and downstream inflammatory response, promoted pyroptosis, and aggravated dopaminergic neuron loss. TREM2 acts as an anti-inflammatory in PD through the TLR4/MyD88/NF-κB pathway, which extends previous findings and supports the notion that TREM2 ameliorates neuroinflammation in PD.

3.
Chem Sci ; 14(46): 13402-13409, 2023 Nov 29.
Article in English | MEDLINE | ID: mdl-38033900

ABSTRACT

Developing innovative catalysts for efficiently activating O2 into singlet oxygen (1O2) is a cutting-edge field with the potential to revolutionize green chemical synthesis. Despite its potential, practical implementation remains a significant challenge. In this study, we design a series of nitrogen (N)-doped manganese oxides (Ny-MnO2, where y represents the molar amount of the N precursor used) nanocatalysts using compartmentalized-microemulsion crystallization followed by post-calcination. These nanocatalysts demonstrate the remarkable ability to directly produce 1O2 at room temperature without the external fields. By strategically incorporating defect engineering and interstitial N, the concentration of surface oxygen atoms (Os) in the vicinity of oxygen vacancy (Ov) reaches 51.1% for the N55-MnO2 nanocatalyst. This feature allows the nanocatalyst to expose a substantial number of Ov and interstitial N sites on the surface of N55-MnO2, facilitating effective chemisorption and activation of O2. Verified through electron paramagnetic resonance spectroscopy and reactive oxygen species trapping experiments, the spontaneous generation of 1O2, even in the absence of light, underscores its crucial role in aerobic oxidation. Density functional theory calculations reveal that an increased Ov content and N doping significantly reduce the adsorption energy, thereby promoting chemisorption and excitation of O2. Consequently, the optimized N55-MnO2 nanocatalyst enables room-temperature aerobic oxidation of alcohols with a yield surpassing 99%, representing a 6.7-fold activity enhancement compared to ε-MnO2 without N-doping. Furthermore, N55-MnO2 demonstrates exceptional recyclability for the aerobic oxidative conversion of benzyl alcohol over ten cycles. This study introduces an approach to spontaneously activate O2 for the green synthesis of fine chemicals.

4.
Nanotechnology ; 33(45)2022 Aug 23.
Article in English | MEDLINE | ID: mdl-35914509

ABSTRACT

High-efficiency bi-functional electrocatalysts with long-term stability are critical to the development of many kinds of fuel cells, because that the performance of battery is limited by the slow kinetics of oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). In this work, porous MCo2O4(M = Zn, Cu, Fe, Mn) were prepared by hydrothermal method with NH4F and urea as surfactants. FeCo2O4with porous structure has more oxygen defects and the larger specific surface area than other MCo2O4(M = Zn, Cu, Mn), and it not onlysupplies more active sites but also avails the transmission of electrolyte and O2in the process of ORR and OER in 0.1 M KOH aqueous solution. Porous FeCo2O4electrode material produces less intermediate H2O2, and its ORR is mainly controlled by a 4e-reaction path. Compared with commercial Pt/C, the prepared FeCo2O4has comparable ORR activity and excellent OER activity. At the same time, the stability of FeCo2O4to ORR is significantly higher than that of commercial Pt/C. The porous FeCo2O4was prepared by facile synthesis procedure could be a potential promising bi-functional catalyst due to its high electrocatalytic activities and long-term stability for both the ORR and OER.

5.
Front Genet ; 13: 862264, 2022.
Article in English | MEDLINE | ID: mdl-35711946

ABSTRACT

Breast cancer (BC) is the second leading cause of brain metastases (BM), with high morbidity and mortality. The aim of our study was to explore the effect of the cartilage intermediate layer protein (CILP) on breast cancer brain metastases (BCBM). Using a weighted gene coexpression network analysis (WGCNA) in GSE100534 and GSE125989 datasets, we found that the yellow module was closely related to the occurrence of BCBM, and CILP was a hub gene in the yellow module. Low CILP expression was associated with a poor prognosis, and it was an independent prognostic factor for stage III-IV BC determined using Cox regression analysis. A nomogram model including CILP expression was established to predict the 5-, 7-, and 10-year overall survival (OS) probabilities of stage III-IV BC patients. We found that CILP mRNA expression was downregulated in BCBM through GSE100534, GSE125989, and GSE43837 datasets. In addition, we found that CILP mRNA expression was negatively correlated with vascular endothelial growth factor A (VEGFA), which is involved in regulating the development of BM. UALCAN analysis showed that CILP expression was downregulated in HER2-positive (HER2+) and triple-negative breast cancer (TNBC), which are more prone to BM. The vitro experiments demonstrated that CILP significantly inhibited BC cell proliferation and metastasis. Western blot (WB) results further showed that the mesenchymal protein marker vimentin was significantly downregulated following CILP overexpression, suggesting that CILP could participate in migration through epithelial-mesenchymal transition (EMT). A comparison of CILP expression using immunohistochemistry in BC and BCBM showed that CILP was significantly downregulated in BCBM. In addition, gene set variation analysis (GSVA) revealed that CILP was associated with the T-cell receptor signaling pathway in BCBM and BC, indicating that CILP may be involved in BCBM through immune effects. BCBM showed lower immune infiltration than BC. Moreover, CILP expression was positively correlated with HLA-II, T helper cells (CD4+ T cells), and Type II IFN Response in BCBM. Collectively, our study indicates that CILP is associated with immune infiltration and may be a putative gene involved in BCBM. CILP offers new insights into the pathogenesis of BCBM, which will facilitate the development of novel targets for BCBM patients.

6.
Mol Brain ; 13(1): 102, 2020 07 08.
Article in English | MEDLINE | ID: mdl-32641146

ABSTRACT

Parkinson's disease (PD) is the second most common neurodegenerative disease, and mild cognitive impairment (MCI) is a well-established risk factor for the development of dementia in PD. A growing body of evidence suggests that low expression of glucocerebrosidase (GBA) promotes the transmission of α-synuclein (α-Syn) interpolymers and the progression of PD. However, how GBA mutations affect the pathogenesis of PD via abnormal aggregation of α-Syn is unclear, and no clinically valid PD-MCI genetic markers have been identified. Here, we first located a GBA eQTL, rs12411216, by analysing DHS, eQTL SNP, and transcription factor binding site data using the UCSC database. Subsequently, we found that rs12411216 was significantly associated with PD-MCI (P < 0.05) in 306 PD patients by genotyping. In exploring the relationship between rs12411216 and GBA expression, the SNP was found to be associated with GBA expression in 50 PD patients through qPCR verification. In a further CRISPR/Cas9-mediated genome editing module, the SNP was identified to cause a decrease in GBA expression, weaken enzymatic activity and enhance the abnormal aggregation of α-Syn in SH-SY5Y cells. Additionally, using an electrophoretic mobility shift assay, we confirmed that the binding efficiency of transcription factor E2F4 was affected by the rs12411216 SNP. In conclusion, our results showed that rs12411216 regulated GBA expression, supporting its potential role as a PD-MCI genetic biomarker and highlighting novel mechanisms underlying Parkinson's disease.


Subject(s)
Cognitive Dysfunction/enzymology , Cognitive Dysfunction/genetics , Glucosylceramidase/genetics , Parkinson Disease/enzymology , Parkinson Disease/genetics , Cell Line, Tumor , Cognitive Dysfunction/complications , E2F4 Transcription Factor/metabolism , Glucosylceramidase/metabolism , Humans , Models, Biological , Parkinson Disease/complications , Phosphorylation , Polymorphism, Single Nucleotide/genetics , Protein Aggregates , Protein Binding , alpha-Synuclein/metabolism
7.
Mikrochim Acta ; 187(1): 64, 2019 12 18.
Article in English | MEDLINE | ID: mdl-31853725

ABSTRACT

A sensitive nonenzymatic amperometric glucose sensor is described that relies on a glassy carbon electrode modified with a macro-/meso-porous NiCo2O4. NiCo2O4 with spinel structure has been prepared via a one-step solution combustion method. The material was characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and nitrogen absorption/desorption. An electrode was coated with the porous material and then displayed excellent electrocatalytic activity towards the direct oxidation of glucose in 0.15 M NaOH solution by cyclic voltammetry. Amperometric I-t curve demonstrated a sensitivity of 2100 µA·mM-1·cm-2 at an applied potential of 0.45 V (vs Hg/HgCl). The sensor has a linear response in the 0.001 to 1.0 mΜ glucose concentration range, a fast response time (3.9 s) and a low detection limit (0.38 µΜ). Graphical abstract.


Subject(s)
Biosensing Techniques , Cobalt/chemistry , Glucose/analysis , Nickel/chemistry , Oxides/chemistry , Carbon/chemistry , Electrochemical Techniques , Electrodes , Particle Size , Porosity , Surface Properties
8.
Cell Death Dis ; 9(10): 979, 2018 09 24.
Article in English | MEDLINE | ID: mdl-30250023

ABSTRACT

LncRNA plays a crucial role in human disease. However, the expression and function of LncRNA in ICP(Intrahepatic cholestasis of pregnancy) is still not fully elucidated. In this study, we found Linc02527 was increased expression in placenta and serum of ICP patients. Ectopically expression of Linc02527 promoted autophagy and proliferate in HTR8 cells. Silencing Linc02527 suppressed the autophagy and proliferate in HTR8 cells. Mechanically study revealed that Linc02527 regulated the expression of ATG5 and ATG7 by sponging miR-3185. Linc02527 directly binding to YBX1 and activated P21. The growth of C57 mouse was retarded when autophagy was activated. In normal condition, inhibited autophagy using chloroquine did not affect the growth of C57 mouse. However, in the condition of autophagy was activated, inhibited autophagy using chloroquine can improve the growth of C57 mouse. Overall, the results of this study identified Linc02527 as a candidate biomarker in ICP and a potential target for ICP therapy. Chloroquine was a potential drug for ICP therapy.


Subject(s)
Autophagy/physiology , Cholestasis, Intrahepatic/blood , Placenta/metabolism , Pregnancy Complications/blood , RNA, Long Noncoding/metabolism , Animals , Autophagy/drug effects , Autophagy-Related Protein 5/metabolism , Autophagy-Related Protein 7/metabolism , Biomarkers/metabolism , Cell Line , Cell Proliferation/physiology , Chloroquine/administration & dosage , Chloroquine/pharmacology , Cyclin-Dependent Kinase Inhibitor p21/metabolism , Female , Gene Silencing , Humans , Mice , Mice, Inbred C57BL , MicroRNAs/metabolism , Models, Animal , Placenta/pathology , Pregnancy , RNA, Long Noncoding/genetics , Rats, Sprague-Dawley , Y-Box-Binding Protein 1/metabolism
9.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 34(5): 764-766, 2017 Oct 10.
Article in Chinese | MEDLINE | ID: mdl-28981950

ABSTRACT

OBJECTIVE: To explore genetic mutation and clinical treatment for a patient with globozoospermia. METHODS: Histomorphology of the sperms was studied by Wright-Giemsa staining and transmission electron microscopy. Potential mutation of the DPY19L2 gene was detected by PCR amplification and Sanger sequencing. RESULTS: Wright-Giemsa staining showed that all spermatozoa from the patient were round-headed and lacked the acrosome, with the nuclei of sperm head stained in dark and full. Transmission electron microscopy revealed large round sperm heads, with an even layer of unit membrane surrounding the nuclei and dispersed cytoplasmic vacuoles but no acrosomal structure. The patient has harbored a homozygous deletion of the DPY19L2 gene. With intracytoplasmic sperm injection (ICSI) treatment, fertilization rate of the oocytes has reached 28.6%, which resulted in a successful pregnancy. A healthy male was born. CONCLUSION: The homozygous deletion of DPY19L2 probably underlies the globozoospermia in this case, for which ICSI has provided an effective treatment. However, there is still a risk of low oocyte fertilization rate or fertilization failure. Further studies are required.


Subject(s)
Membrane Proteins/genetics , Mutation , Teratozoospermia/genetics , Adult , DNA Mutational Analysis , Humans , Infant, Newborn , Male , Sperm Injections, Intracytoplasmic
10.
Clin Endocrinol (Oxf) ; 84(3): 386-93, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26387747

ABSTRACT

OBJECTIVE: To determine serum vascular endothelial growth factor B (VEGF-B) levels in polycystic ovary syndrome, their association with insulin resistance and ß-cell dysfunction, and the effect of metformin on serum VEGF-B levels. DESIGN: A cross-sectional, interventional study. PATIENTS: We recruited 103 women with polycystic ovary syndrome and 96 age-matched healthy controls. Serum VEGF-B levels were determined in all participants, and 44 polycystic ovary syndrome patients randomly received metformin. MEASUREMENTS: We measured VEGF-B levels in healthy controls and women with polycystic ovary syndrome before and after metformin treatment. RESULTS: Women with polycystic ovary syndrome had higher serum VEGF-B levels, which decreased with metformin treatment. In the lean and overweight/obese groups, patients with polycystic ovary syndrome had higher plasma VEGF-B levels than did healthy controls (P < 0·05). VEGF-B levels were correlated with body mass index, body fat percentage, M values, homeostasis model assessment of insulin resistance and ß-cell function indices. A multiple linear regression analysis showed that VEGF-B level was associated with M values after adjusting for age, body mass index, serum sex hormones and serum lipids in women with polycystic ovary syndrome. CONCLUSIONS: Serum VEGF-B is significantly higher in women with polycystic ovary syndrome and is closely and positively related to insulin resistance. Metformin treatment reduces VEGF-B levels and ameliorates insulin resistance.


Subject(s)
Metformin/therapeutic use , Polycystic Ovary Syndrome/blood , Polycystic Ovary Syndrome/drug therapy , Vascular Endothelial Growth Factor B/blood , Adult , Body Mass Index , Cross-Sectional Studies , Female , Gonadal Steroid Hormones/blood , Humans , Hypoglycemic Agents/therapeutic use , Insulin Resistance , Linear Models , Lipids/blood , Obesity/blood , Overweight/blood , Treatment Outcome , Young Adult
11.
Ecotoxicol Environ Saf ; 125: 16-24, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26650421

ABSTRACT

The objectives of this study were to investigate distribution and solubility of Pb, Cs and As in soils under electrokinetic field and examine the processes of coupled electrokinetic phytoremediation of polluted soils. The elevated bioavailability and bioaccumulation of Pb, As and Cs in paddy soil under an electro-kinetic field (EKF) were studied. The results show that the EKF treatment is effective on lowering soil pH to around 1.5 near the anode which is beneficial for the dissolution of metal(loid)s, thus increasing their overall solubility. The acidification in the anode soil efficiently increased the water soluble (SOL) and exchangeable (EXC) Pb, As and Cs, implying enhanced solubility and elevated overall potential bioavailability in the anode region while lower solubility in the cathode areas. Bioaccumulations of Pb, As and Cs were largely determined by the nature of elements, loading levels and EKF treatment. The native Pb in soil usually is not bioavailable. However, EKF treatment tends to transfer Pb to the SOL and EXC fractions improving the phytoextraction efficiency. Similarly, EKF transferred more EXC As and Cs to the SOL fraction significantly increasing their bioaccumulation in plant roots and shoots. Pb and As were accumulated more in plant roots than in shoots while Cs was accumulated more in shoots due to its similarity of chemical properties to potassium. Indian mustard, spinach and cabbage are good accumulators for Cs. Translocation of Pb, As and Cs from plant roots to shoots were enhanced by EKF. However, this study indicated the overall low phytoextraction efficiency of these plants.


Subject(s)
Arsenic/isolation & purification , Biodegradation, Environmental , Brassica/metabolism , Cesium/isolation & purification , Lead/isolation & purification , Soil Pollutants/chemistry , Spinacia oleracea/metabolism , Arsenic/metabolism , Cesium/metabolism , Electrodes , Environmental Restoration and Remediation/methods , Lead/metabolism , Mustard Plant , Plant Roots , Soil Pollutants/metabolism
12.
Chembiochem ; 15(1): 135-45, 2014 Jan 03.
Article in English | MEDLINE | ID: mdl-24259278

ABSTRACT

G protein-coupled receptor (GPCR) cell signalling cascades are initiated upon binding of a specific agonist ligand to its cell surface receptor. Linking multiple heterologous ligands that simultaneously bind and potentially link different receptors on the cell surface is a unique approach to modulate cell responses. Moreover, if the target receptors are selected based on analysis of cell-specific expression of a receptor combination, then the linked binding elements might provide enhanced specificity of targeting the cell type of interest, that is, only to cells that express the complementary receptors. Two receptors whose expression is relatively specific (in combination) to insulin-secreting pancreatic ß-cells are the sulfonylurea-1 (SUR1) and the glucagon-like peptide-1 (GLP-1) receptors. A heterobivalent ligand was assembled from the active fragment of GLP-1 (7-36 GLP-1) and glibenclamide, a small organic ligand for SUR1. The synthetic construct was labelled with Cy5 or europium chelated in DTPA to evaluate binding to ß-cells, by using fluorescence microscopy or time-resolved saturation and competition binding assays, respectively. Once the ligand binds to ß-cells, it is rapidly capped and presumably removed from the cell surface by endocytosis. The bivalent ligand had an affinity approximately fivefold higher than monomeric europium-labelled GLP-1, likely a result of cooperative binding to the complementary receptors on the ßTC3 cells. The high-affinity binding was lost in the presence of either unlabelled monomer, thus demonstrating that interaction with both receptors is required for the enhanced binding at low concentrations. Importantly, bivalent enhancement was accomplished in a cell system with physiological levels of expression of the complementary receptors, thus indicating that this approach might be applicable for ß-cell targeting in vivo.


Subject(s)
Glucagon-Like Peptide 1/chemistry , Glyburide/pharmacology , Hypoglycemic Agents/pharmacology , Insulin-Secreting Cells/drug effects , Amino Acid Sequence , Animals , Cells, Cultured , Fluorescent Dyes/chemistry , Glucagon-Like Peptide 1/metabolism , Glucagon-Like Peptide-1 Receptor , Glyburide/chemistry , Glyburide/metabolism , Hypoglycemic Agents/chemical synthesis , Hypoglycemic Agents/chemistry , Insulin-Secreting Cells/metabolism , Molecular Sequence Data , Protein Binding , Rats , Receptors, Glucagon/metabolism , Structure-Activity Relationship , Sulfonylurea Receptors/metabolism
13.
Protein Pept Lett ; 14(9): 925-7, 2007.
Article in English | MEDLINE | ID: mdl-18045236

ABSTRACT

Bifunctional pyrimidine deaminase/reductase (RibD) plays an important role during riboflavin biosynthesis in many microorganisms. The 40.4 kDa RibD from Shigella flexneri 2a has been cloned, expressed, purified and characterized. Three Crystals of RibD have been obtained by the hanging-drop technique at 291 K using PEG 20k or NaCl as precipitant. The RibD crystal using PEG 20k as precipitant diffracted to 2.5A.


Subject(s)
Aminohydrolases/chemistry , Aminohydrolases/genetics , Oxidoreductases/chemistry , Oxidoreductases/genetics , Pyrimidines/metabolism , Shigella flexneri/enzymology , Aminohydrolases/isolation & purification , Aminohydrolases/metabolism , Cloning, Molecular , Crystallization , Crystallography, X-Ray , Electrophoresis, Polyacrylamide Gel , Oxidoreductases/isolation & purification , Oxidoreductases/metabolism , Polymerase Chain Reaction , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/isolation & purification , Recombinant Fusion Proteins/metabolism , Shigella flexneri/genetics
14.
J Mol Biol ; 366(5): 1603-14, 2007 Mar 09.
Article in English | MEDLINE | ID: mdl-17224163

ABSTRACT

Phosphoribosylaminoimidazole carboxylase/phosphoribosylaminoimidazole succinocarboxamide synthetase (PAICS) is an important bifunctional enzyme in de novo purine biosynthesis in vertebrate with both 5-aminoimidazole ribonucleotide carboxylase (AIRc) and 4-(N-succinylcarboxamide)-5-aminoimidazole ribonucleotide synthetase (SAICARs) activities. It becomes an attractive target for rational anticancer drug design, since rapidly dividing cancer cells rely heavily on the purine de novo pathway for synthesis of adenine and guanine, whereas normal cells favor the salvage pathway. Here, we report the crystal structure of human PAICS, the first in the entire PAICS family, at 2.8 A resolution. It revealed that eight PAICS subunits, each composed of distinct AIRc and SAICARs domains, assemble a compact homo-octamer with an octameric-carboxylase core and four symmetric periphery dimers formed by synthetase domains. Based on structural comparison and functional complementation analyses, the active sites of SAICARs and AIRc were identified, including a putative substrate CO(2)-binding site. Furthermore, four symmetry-related, separate tunnel systems in the PAICS octamer were found that connect the active sites of AIRc and SAICARs. This study illustrated the octameric nature of the bifunctional enzyme. Each carboxylase active site is formed by structural elements from three AIRc domains, demonstrating that the octamer structure is essential for the carboxylation activity. Furthermore, the existence of the tunnel system implies a mechanism of intermediate channeling and suggests that the quaternary structure arrangement is crucial for effectively executing the sequential reactions. In addition, this study provides essential structural information for designing PAICS-specific inhibitors for use in cancer chemotherapy.


Subject(s)
Carboxy-Lyases/chemistry , Purines/biosynthesis , Amino Acid Sequence , Binding Sites , Carboxy-Lyases/genetics , Carboxy-Lyases/metabolism , Crystallography, X-Ray , Escherichia coli/genetics , Genetic Complementation Test , Humans , Light , Models, Molecular , Molecular Sequence Data , Molecular Structure , Mutagenesis, Site-Directed , Point Mutation , Protein Biosynthesis , Protein Structure, Secondary , Protein Structure, Tertiary , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , Scattering, Radiation , Sequence Homology, Amino Acid , Spectrum Analysis, Raman , X-Ray Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL
...