Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Sci (Weinh) ; 10(13): e2207329, 2023 May.
Article in English | MEDLINE | ID: mdl-36825686

ABSTRACT

Aqueous Zn-ion batteries (AZIBs) and Zn-ion hybrid supercapacitors (AZHSCs) are considered promising energy-storage alternatives to Li-ion batteries due to the attractive merits of low-price and high-safety. However, the lack of suitable cathode materials always hinders their large-scale application. Herein, amorphous K-buserite microspheres (denoted as K-MnOx ) are reported as cathode materials for both AZIBs and AZHSCs, and the energy-storage mechanism is systematically revealed. It is found that K-MnOx is composed of rich amorphous K-buserite units, which can irreversibly be transformed into amorphous Zn-buserite units in the first discharge cycle. Innovatively, the transformed Zn-buserite acts as active materials in the following cycles and is highly active/stable for fast Zn-diffusion and superhigh pseudocapacitance, enabling the achievement of high-efficiency energy storage. In the AZIBs, K-MnOx delivers 306 mAh g-1 after 100 cycles at 0.1 A g-1 with 102% capacity retention, while in the AZHSCs, it shows 515.0/116.0 F g-1 at 0.15/20.0 A g-1 with 92.9% capacitance retention at 5.0 A g-1 after 20 000 cycles. Besides, the power/energy density of AZHSCs device can reach up to 16.94 kW kg-1 (at 20 A g-1 )/206.7 Wh kg-1 (at 0.15 A g-1 ). This work may provide some references for designing next-generation aqueous energy-storage devices with high energy/power density.

SELECTION OF CITATIONS
SEARCH DETAIL
...