Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 14(15)2021 Jul 23.
Article in English | MEDLINE | ID: mdl-34361291

ABSTRACT

The nonrenewable nature of fossil energy has led to a gradual decrease in reserves. Meanwhile, as society becomes increasingly aware of the severe pollution caused by fossil energy, the demand for clean energy, such as solar energy, is rising. Moreover, in recent years, electronic devices with screens, such as mobile phones and computers, have had increasingly higher requirements for light transmittance. Whether in solar cells or in the display elements of electronic devices, transparent conductive films directly affect the performance of these devices as a cover layer. In this context, the development of transparent electrodes with low sheet resistance and high light transmittance has become one of the most urgent issues in related fields. At the same time, conventional electrodes can no longer meet the needs of some of the current flexible devices. Because of the high sheet resistance, poor light transmittance, and poor bending stability of the conventional tin-doped indium tin oxide conductive film and fluorine-doped tin oxide transparent conductive glass, there is a need to find alternatives with better performance. In this article, the progress of research on transparent electrode materials with sandwich structures and their advantages is reviewed according to the classification of conductive materials to provide reference for research in related fields.

2.
Philos Trans A Math Phys Eng Sci ; 377(2144): 20180075, 2019 May 06.
Article in English | MEDLINE | ID: mdl-30879421

ABSTRACT

Functionally graded soft materials (FGSMs) with microstructures and mechanical properties exhibiting gradients across a spatial volume to satisfy specific functions have received interests in recent years. How to characterize the mechanical properties of these FGSMs in vivo/in situ and/or in a non-destructive manner is a great challenge. This paper investigates the use of ultrasound elastography in the mechanical characterization of FGSMs. An efficient finite-element model was built to calculate the dispersion relation for surface waves in FGSMs. For FGSMs with large elastic gradients, the measured dispersion relation can be used to identify mechanical parameters. In the case where the elastic gradient is smaller than a certain critical value calculated here, our analysis on transient wave motion in FGSMs shows that the group velocities measured at different depths can infer the local mechanical properties. Experiments have been performed on polyvinyl alcohol (PVA) cryogel to demonstrate the usefulness of the method. Our analysis and the results may not only find broad applications in mechanical characterization of FGSMs but also facilitate the use of shear wave elastography in clinics because many diseases change the local elastic properties of soft tissues and lead to different material gradients. This article is part of the theme issue 'Rivlin's legacy in continuum mechanics and applied mathematics'.

3.
Amino Acids ; 50(1): 141-147, 2018 01.
Article in English | MEDLINE | ID: mdl-28988398

ABSTRACT

Synthetic green fluorescent protein (GFP) chromophore analogues with a positive charge at the phenyl-like group have the highly electrophilic amidine carbon, smaller LUMO-HOMO energy gap, red-shifted electronic absorptions and fluorescent emissions, and accelerated E-Z thermoisomerization rates. They are water-labile and their hydrolysis results in ring-opening of the imidazolinone moiety with a half life around 25-37 h in D2O at 25 °C.


Subject(s)
Green Fluorescent Proteins/chemistry , Crystallography, X-Ray , Green Fluorescent Proteins/chemical synthesis , Hydrolysis , Models, Molecular , Molecular Structure , Nuclear Magnetic Resonance, Biomolecular , Photochemistry , Protein Isoforms/chemical synthesis , Protein Isoforms/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...