Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.026
Filter
1.
Cancer Cell Int ; 24(1): 232, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38961429

ABSTRACT

BACKGROUND: The clinical application of peptide vaccines in tumor immunotherapy holds significant promise. Peptide-based tumor vaccines are currently subject to certain limitations in clinical trials, including the challenge of inducing a sustained response from CD4+ T helper cells and cytotoxic T lymphocytes (CTL), as well as human leukocyte antigen (HLA) restrictions. METHODS: Through the utilization of biological information methodology, a screening process was conducted to identify three potential long peptides that are specifically targeted by the MAGE-A4 antigen. The candidate long peptides were subjected to in vitro testing using human peripheral blood lymphocytes as samples to evaluate their immunogenicity and immune function. The antitumor properties and preliminary mechanism of the long peptide vaccine were investigated through the use of a mouse model designed for the prevention of triple negative breast cancer (TNBC). RESULTS: Three predicted multi-epitope long peptides targeting MAGE-A4 have shown to have a strong immunogenicity, with a total positive rate of 72% across different HLA subtypes in Chinese populations. they can also increase the levels of the costimulatory factor CD137 and tumor necrosis factor-alpha (TNF-α), activate T cells, and boost the cytotoxic activity. Results from an animal study have revealed that the long-peptide vaccine, both on its own and in combination with R848, has displayed impressive anti-tumor and target-specific capabilities. Moreover, it has the ability to increase the expression of effector memory T cells and central memory T cells. CONCLUSIONS: This study was the first to screen three multi-epitope long peptides targeting MAGE-A4 and assess their immunogenicity, immune function, and potential as adjuvant peptides. The results showed that the MAGE-A4 long peptide vaccine can be used as a novel immunoprophylaxis method to prevent TNBC. Moreover, the proposed development model is capable of screening multiple target antigens, which lead to its clinical application.

2.
J Exp Clin Cancer Res ; 43(1): 187, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38965580

ABSTRACT

BACKGROUND: Recent studies have highlighted the significant role of the NF-κB signaling pathway in the initiation and progression of cancer. Furthermore, long noncoding RNAs (lncRNAs) have been identified as pivotal regulators in sustaining the NF-κB signaling pathway's functionality. Despite these findings, the underlying molecular mechanisms through which lncRNAs influence the NF-κB pathway remain largely unexplored. METHODS: Bioinformatic analyses were utilized to investigate the differential expression and prognostic significance of XTP6. The functional roles of XTP6 were further elucidated through both in vitro and in vivo experimental approaches. To estimate the interaction between XTP6 and NDH2, RNA pulldown and RNA Immunoprecipitation (RIP) assays were conducted. The connection between XTP6 and the IκBα promoter was examined using Chromatin Isolation by RNA Purification (ChIRP) assays. Additionally, Chromatin Immunoprecipitation (ChIP) assays were implemented to analyze the binding affinity of c-myc to the XTP6 promoter, providing insights into the regulatory mechanisms at play. RESULTS: XTP6 was remarkedly upregulated in glioblastoma multiforme (GBM) tissues and was connected with adverse prognosis in GBM patients. Our investigations revealed that XTP6 can facilitate the malignant progression of GBM both in vitro and in vivo. Additionally, XTP6 downregulated IκBα expression by recruiting NDH2 to the IκBα promoter, which resulted in elevated levels of H3K27me3, thereby reducing the transcriptional activity of IκBα. Moreover, the progression of GBM was further driven by the c-myc-mediated upregulation of XTP6, establishing a positive feedback loop with IκBα that perpetuated the activation of the NF-κB signaling pathway. Notably, the application of an inhibitor targeting the NF-κB signaling pathway effectively inhibited the continuous activation induced by XTP6, leading to a significant reduction in tumor formation in vivo. CONCLUSION: The results reveal that XTP6 unveils an innovative epigenetic mechanism instrumental in the sustained activation of the NF-κB signaling pathway, suggesting a promising therapeutic target for the treatment of GBM.


Subject(s)
Disease Progression , Glioblastoma , NF-kappa B , Proto-Oncogene Proteins c-myc , RNA, Long Noncoding , Humans , Glioblastoma/metabolism , Glioblastoma/pathology , Glioblastoma/genetics , NF-kappa B/metabolism , Mice , Animals , Proto-Oncogene Proteins c-myc/metabolism , Proto-Oncogene Proteins c-myc/genetics , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Signal Transduction , Prognosis , Feedback, Physiological , Brain Neoplasms/metabolism , Brain Neoplasms/pathology , Brain Neoplasms/genetics , Male , Cell Proliferation , Female
3.
Hum Gene Ther ; 2024 Jul 13.
Article in English | MEDLINE | ID: mdl-39001819

ABSTRACT

Effective use of adeno-associated viruses (AAVs) for clinical gene therapy is limited by their propensity to accumulate in and transduce the liver. This natural liver tropism is associated with severe adverse events at the high doses that can be necessary for achieving therapeutic transgene expression in extra-hepatic tissues. To improve the safety and cost of AAV gene therapy, capsid engineering efforts are underway to redirect in vivo AAV biodistribution away from the liver toward disease-relevant peripheral organs such as the heart. Building on previous work, we generated a series of AAV libraries containing variations at three residues (Y446, N470, and W503) of the galactose-binding pocket of the AAV9 VP1 protein. Screening of this library in mice identified the XRH family of variants (Y446X, N470R, and W503H), the strongest of which, HRH, exhibited a six-fold reduction in liver RNA expression and a ten-fold increase in cardiac RNA expression compared with wild-type AAV9 in the mouse. Screening of our library in a nonhuman primate (NHP) revealed reduced performance of AAV9 and two closely related vectors in the NHP liver compared with the mouse liver. Measurement of the galactose-binding capacity of our library further identified those same three vectors as the only strong galactose binders, suggesting an altered galactose presentation between the mouse and NHP liver. N-glycan profiling of these tissues revealed a 9% decrease in exposed galactose in the NHP liver compared with the mouse liver. In this work, we identified a novel family of AAV variants with desirable biodistribution properties that may be suitable for targeting extra-hepatic tissues such as the heart. These data also provide important insights regarding species- and tissue-specific differences in glycan presentation that may have implications for the development and translation of AAV gene therapies.

4.
Cancer Lett ; 598: 217087, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38964732

ABSTRACT

Human appendix is critical for the maintenance of intestinal homeostasis. Appendicectomy has been the optimal treatment of acute appendicitis, yet the cancer incidence after appendix removal remains unclear. In this territory-wide retrospective cohort study, adult participants who underwent appendicectomy from 2000 to 2018 were retrieved from a population database (n = 43,983), while matched reference participants were retrieved as controls (n = 85,853). After appendicectomy, the overall cancer risk was significantly increased (subdistribution hazard ratio (SHR) = 1.124) compared to the non-appendicectomy group. Appendicectomy-treated males had higher cancer risk than males without appendicectomy (SHR = 1.197), while such difference was not observed in female participants. Significant increase in cancer risk was also observed in elder participants (age >60) with appendicectomy (SHR = 1.390). Appendicectomy was positively correlated with the risk of digestive tract and respiratory cancers including colon (SHR = 1.440), pancreas (SHR = 1.930), and trachea, bronchus, and lung (SHR = 1.394). In contrast, the risk of liver cancer was markedly decreased after appendicectomy (SHR = 0.713). In conclusion, we reported the association of appendicectomy with subsequent cancer incidence. These findings highlight the potential complication after appendix removal and the necessity of post-operative management to monitor and prevent long-term adverse events.

5.
Nat Commun ; 15(1): 5897, 2024 Jul 13.
Article in English | MEDLINE | ID: mdl-39003257

ABSTRACT

The origin of energetic charged particles in universe remains an unresolved issue. Astronomical observations combined with simulations have provided insights into particle acceleration mechanisms, including magnetic reconnection acceleration, shock acceleration, and stochastic acceleration. Recent experiments have also confirmed that electrons can be accelerated through processes such as magnetic reconnection and collisionless shock formation. However, laboratory identifying stochastic acceleration as a feasible mechanism is still a challenge, particularly in the creation of collision-free turbulent plasmas. Here, we present experimental results demonstrating kinetic turbulence with a typical spectrum k-2.9 originating from Weibel instability. Energetic electrons exhibiting a power-law distribution are clearly observed. Simulations further reveal that thermal electrons undergo stochastic acceleration through collisions with multiple magnetic islands-like structures within the turbulent region. This study sheds light on a critical transition period during supernova explosion, where kinetic turbulences originating from Weibel instability emerge prior to collisionless shock formation. Our results suggest that electrons undergo stochastic acceleration during this transition phase.

6.
J Colloid Interface Sci ; 675: 958-969, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-39002245

ABSTRACT

Graphene oxide (GO) membranes have emerged as promising candidates for water purification applications, owing to their unique physicochemical attributes. Nevertheless, the trade-off between permeability and selectivity, coupled with their vulnerability to membrane fouling, poses significant challenges to their widespread industrial deployment. In this study, we introduce an innovative in-situ growth and layer-by-layer assembly technique for fabricating multilayer GO membranes reinforced with bismuth oxybromide (BiOBr) on commonly employed Nylon substrates. This method allows for the creation of two-dimensional lamellar membranes capable of photocatalytic self-cleaning and tunable nanochannel dimensions. The synthesized GO/BiOBr composite membranes exhibit remarkable water permeance rates (approximately 493.9 LMH/bar) and high molecular rejection efficiency (>99 % for Victoria Blue B and Congo Red dyes). Notably, these membranes showcase an enhanced photocatalytic self-cleaning performance upon exposure to visible light. Our work provides a viable route for the fabrication of functionalized GO-based nanofiltration membranes with BiOBr inclusions, offering a synergistic combination of high water permeability, modifiable nanochannels, and effective self-cleaning capabilities through photocatalysis.

7.
J Pain ; : 104623, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-39002742

ABSTRACT

Chronic postsurgical pain (CPSP) affects postoperative rehabilitation and quality of life in patients, but its mechanisms are still poorly understood. Hyperbaric oxygen (HBO) attenuates neuropathic pain in animal and human studies, but its efficacy for CPSP treatment and its underlying mechanism have not been elucidated. This study aimed to investigate the analgesic effect of HBO in a CPSP rat model and the role of spinal cord adenosine circulation in HBO-induced analgesia. A skin/muscle incision and retraction (SMIR) rat model was used to mimic CPSP, and HBO treatment (2.5 ATA, 60 min) was administered once daily for five consecutive days beginning three days after surgery. The role of spinal cord adenosine circulation in HBO-induced analgesia was investigated using APCP (a CD73 inhibitor), DPCPX (an A1R antagonist) or an intrathecal injection of adenosine. The mechanical paw withdrawal threshold (PWT) was determined at different time points before and after surgery. The spinal cord adenosine and ATP contents were analyzed using high-performance liquid chromatography (HPLC), and the spinal cord expression of A1R, CD73, and ADK was examined by Western blotting and immunofluorescence staining. The results showed that the mechanical PWT of the ipsilateral hind paw and the adenosine content decreased, and the spinal cord expression of A1R, CD73, and ADK and ATP content increased within 14 days after surgery. HBO treatment alleviated mechanical allodynia, reduced ATP content, and increased adenosine content by activating CD73 but downregulated the spinal cord expression of A1R, CD73, and ADK. Intrathecal adenosine alleviated mechanical allodynia after SMIR and downregulated the spinal cord expression of A1R and CD73, and intrathecal APCP or DPCPX attenuated the analgesic effect of HBO treatment on SMIR-induced CPSP. PERSPECTIVE: Spinal cord adenosine is involved in the occurrence and development of CPSP, and HBO treatment alleviates CPSP by regulating adenosine production/metabolism in the spinal cord. Thus, HBO may be employed for the treatment of CPSP with favorable efficacy.

8.
Toxicology ; : 153886, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-39002880

ABSTRACT

Benzo[a]pyrene (BaP) is associated with the development of lung cancer, but the underlying mechanism has not been completely clarified. Here, we used 10µM BaP to induce malignant transformation of human bronchial epithelial BEAS-2B cells, named BEAS-2B-T. Results indicated that BaP (6.25, 12.5 and 25µM) treatment significantly promoted the migration and invasion of BEAS-2B-T cells. Meanwhile, BaP exposure inhibited ferroptosis in BEAS-2B-T, ferroptosis-related indexes Fe2+, malondialdehyde (MDA), lipid peroxidation (LPO) and reactive oxygen species (ROS) decreased significantly. The protein level of ferroptosis-related molecule transferrin receptor (TFRC) decreased significantly, while solute carrier family 7 membrane 11 (SLC7A11), ferritin heavy chain 1 (FTH1) and glutathione peroxidase 4 (GPX4) increased significantly. The intervention of ferroptosis dramatically effected the migration and invasion of BEAS-2B-T induced by BaP. Furthermore, the expression of YTH N6-methyladenosine RNA binding protein 1 (YTHDF1) was markedly increased after BaP exposure. YTHDF1 knockdown inhibited BEAS-2B-T migration and invasion by promoting ferroptosis. In the meantime, the contents of Fe2+, MDA, LPO and ROS increased significantly, TFRC was markedly increased, and SLC7A11, FTH1, and GPX4 were markedly decreased. Moreover, overexpression of YTHDF1 promoted BEAS-2B-T migration and invasion by inhibiting ferroptosis. Importantly, knockdown of YTHDF1 promoted ferroptosis and reduced BEAS-2B-T migration and invasion during BaP exposure, and overexpression of YTHDF1 increased migration and invasion of BEAS-2B-T by inhibiting of ferroptosis during BaP exposure. RNA immunoprecipitation assays indicated that the binding of YTHDF1 to SLC7A11 and FTH1 markedly increased after YTHDF1 overexpression. Therefore, we concluded that BaP promotes the malignant progression of BEAS-2B-T cells through YTHDF1 upregulating SLC7A11 and FTH1 to inhibit ferroptosis. This study reveals new epigenetic and ferroptosis markers for preventing and treating lung cancer induced by environmental carcinogens.

9.
Food Funct ; 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38984966

ABSTRACT

Acute kidney injury (AKI) is a kind of critical kidney disease characterized by tubular injury, rapid decline of renal function and renal inflammation, with high clinical incidence. AKI has been shown to be associated with dysregulation of the gut microbiota and impaired intestinal barrier. Bifidobacterium has a positive impact on the treatment of many diseases. However, little is known about the role and mechanism of Bifidobacterium in AKI. Based on previous experiments, Bifidobacterium bifidum FL228.1 and FL276.1, which can relieve intestinal inflammation, and Bifidobacterium bifidum ZL.1, which has anti-inflammatory potential, were screened. This study aimed to investigate the effects of Bifidobacterium bifidum FL228.1, FL276.1 and ZL.1 on AKI, focusing on their role in the gut microbiota composition and intestinal barrier function. Our results showed that Bifidobacterium bifidum FL228.1, FL276.1 and ZL.1 effectively improved kidney function in mice with AKI by regulating the gut microbiota dysregulation, inhibiting intestinal inflammation and rebuilding the intestinal mucosal barrier. In addition, intervention with probiotics turned the gut microbiota disturbance caused by AKI into a normalized trend, reversed the adverse outcome of microbiota imbalance, and increased the abundance of potentially beneficial bacteria Bifidobacterium and Faecalibaculum. In summary, Bifidobacterium bifidum FL228.1, FL276.1, and ZL.1 alleviate adenine-induced AKI based on the gut-kidney axis. Although their mechanisms of action are different, their effect on alleviating AKI is almost the same.

10.
Ageing Res Rev ; 100: 102409, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38986844

ABSTRACT

Recently, the incidence of heat-related illnesses has exhibited a steadily upward trend, which is closely associated with several environmental factors such as climate change and air pollution. The progression of heat-related illnesses is a continuous process and can progress to the terminal period when it transforms into heat stroke, the most severe form. Heat stroke is markedly by a core body temperature above 40°C and central nervous system dysfunction. Current knowledge suggests that the pathogenesis of heat stroke is complex and varied, including inflammatory response, oxidative stress, cell death, and coagulation dysfunction. This review consolidated recent research progress on the pathophysiology and pathogenesis of heat stroke, with a focus on the related molecular mechanisms. In addition, we reviewed common strategies and sorted out the drugs in various preclinical stages for heat stroke, aiming to offer a comprehensive research roadmap for more in-depth researches into the mechanisms of heat stroke and the reduction in the mortality of heat stroke in the future.

11.
Mol Cell ; 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38955180

ABSTRACT

During implantation, embryos undergo an unpolarized-to-polarized transition to initiate postimplantation morphogenesis. However, the underlying molecular mechanism is unknown. Here, we identify a transient transcriptional activation governing embryonic morphogenesis and pluripotency transition during implantation. In naive pluripotent embryonic stem cells (ESCs), which represent preimplantation embryos, we find that the microprocessor component DGCR8 can recognize stem-loop structures within nascent mRNAs to sequester transcriptional coactivator FLII to suppress transcription directly. When mESCs exit from naive pluripotency, the ERK/RSK/P70S6K pathway rapidly activates, leading to FLII phosphorylation and disruption of DGCR8/FLII interaction. Phosphorylated FLII can bind to transcription factor JUN, activating cell migration-related genes to establish poised pluripotency akin to implanting embryos. Resequestration of FLII by DGCR8 drives poised ESCs into formative pluripotency. In summary, we identify a DGCR8/FLII/JUN-mediated transient transcriptional activation mechanism. Disruption of this mechanism inhibits naive-poised-formative pluripotency transition and the corresponding unpolarized-to-polarized transition during embryo implantation, which are conserved in mice and humans.

12.
Angew Chem Int Ed Engl ; : e202410734, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38958047

ABSTRACT

Since the discovery in 2000, conversion-type materials have emerged as a promising negative-electrode candidate for next-generation batteries with high capacity and tunable voltage, limited by low reversibility and severe voltage hysteresis. Heterogeneous construction stands out as a cost-effective and efficient approach to reducing reaction barriers and enhancing energy density. However, the second term introduced by conventional heterostructure inevitably complicates the electrochemical analysis and poses great challenges to harvesting systematic insights and theoretical guidance. A model cell is designed and established herein for the conversion reactions between Na and TMSA-SnO2, where TMSA-SnO2 represents single atom modification of eight different 3d transition elements (V, Cr, Mn, Fe, Co, Ni, Cu or Zn). Such a model unit fundamentally eliminates the interference from the second phase and thus enables independent exploration of activation manifestations of the heterogeneous architecture. For the first time, a thermodynamically dependent catalytic effect is proposed and verified through statistical data analysis. The mechanism behind the unveiled catalytic effect is further elucidated by which the active d orbitals of transition metals weaken the surface covalent bonds and lower the reaction barriers. This research provides both theoretical insights and practical demonstrations of the advanced heterogeneous electrodes.

13.
Biomed Environ Sci ; 37(6): 565-580, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38988108

ABSTRACT

Objective: Genomic alterations and potential neoantigens for cervical cancer immunotherapy were identified in a cohort of Chinese patients with cervical squamous cell carcinoma (CSCC). Methods: Whole-exome sequencing was used to identify genomic alterations and potential neoantigens for CSCC immunotherapy. RNA Sequencing was performed to analyze neoantigen expression. Results: Systematic bioinformatics analysis showed that C>T/G>A transitions/transversions were dominant in CSCCs. Missense mutations were the most frequent types of somatic mutation in the coding sequence regions. Mutational signature analysis detected signature 2, signature 6, and signature 7 in CSCC samples. PIK3CA, FBXW7, and BICRA were identified as potential driver genes, with BICRA as a newly reported gene. Genomic variation profiling identified 4,960 potential neoantigens, of which 114 were listed in two neoantigen-related databases. Conclusion: The present findings contribute to our understanding of the genomic characteristics of CSCC and provide a foundation for the development of new biotechnology methods for individualized immunotherapy in CSCC.


Subject(s)
Carcinoma, Squamous Cell , Immunotherapy , Uterine Cervical Neoplasms , Humans , Female , Uterine Cervical Neoplasms/genetics , Uterine Cervical Neoplasms/therapy , Uterine Cervical Neoplasms/immunology , Carcinoma, Squamous Cell/genetics , Carcinoma, Squamous Cell/therapy , Carcinoma, Squamous Cell/immunology , Cohort Studies , Antigens, Neoplasm/genetics , Antigens, Neoplasm/immunology , Middle Aged , Exome Sequencing , China , Mutation , Adult , Genomics , East Asian People
14.
Transl Cancer Res ; 13(6): 3090-3105, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38988916

ABSTRACT

Background and Objective: Exosomes are nanoscale extracellular vesicles secreted by cells, which can release bioactive macromolecules, such as microRNA (miRNA) to receptor cells. Exosomes can efficiently penetrate various biological barriers which mediate intercellular communication. MiRNA are a class of non-coding RNA that primarily regulate messenger RNA (mRNA) at the post-transcriptional level. MiRNA is abundant in exosomes, which plays an important role by being transported and released through exosomes secreted by lung cancer cells. This review aims to elucidate the roles of exosome-derived miRNAs in lung cancer. Methods: We focused on the roles of exosome-derived miRNAs in cancer occurrence and development, including angiogenesis, cell proliferation, invasion, metastasis, immune escape, drug resistance, and their clinical value as new diagnostic and prognostic markers for lung cancer. Key Content and Findings: Exosomal miRNA can not only affect angiogenesis of lung cancer, induce epithelial-mesenchymal transformation, and promote reprogramming of tumor microenvironment, but also affect immune regulation and drug resistance transmission and participate in regulating lung cancer cell proliferation. Therefore, understanding the regulatory roles of exosomal miRNAs in tumor invasion and metastasis can provide new ideas for the treatment of lung cancer. Conclusions: Exosomal miRNA can provide some unique ideas on how to improve the efficiency of diagnosis and treatment of lung cancer in the future. Targeting tumor-specific exosomal miRNA represents a new strategy for clinical treatment of lung cancer, which can provide potential non-invasive biomarkers in the early diagnosis of lung cancer. Investigation of the involvement of exosomal miRNAs in the occurrence and progression of tumors can yield new opportunities for the clinical diagnosis and treatment of lung cancer.

15.
J Gastrointest Oncol ; 15(3): 1035-1049, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38989423

ABSTRACT

Background: B7-H3 (or CD276) represents an important costimulatory molecule expressed in many malignant solid tumors, including colorectal cancer (CRC). The receptor of B7-H3 is not known, and the intracellular function of B7-H3 remains obscure. Herein, we report that B7-H3 upregulated the epidermal growth factor heparin-binding epidermal growth factor (HB-EGF), likely by regulating hypoxia-inducible factor 1α (HIF-1α) and thereby promoting the progression of CRC. Methods: Lentiviral transfection was performed on CRC cells to establish stable low-B7-H3 expression cells. A mechanistic analysis with an Agilent human gene expression profiling chip was conducted on them. Clinical data and specimens were collected to detect the connection between B7-H3 and HB-EGF in CRC. Quantitative real-time polymerase chain reaction (qRT-PCR) was conducted to detect the messenger RNA (mRNA) level of B7-H3, HB-EGF, and HIF-1α. Chromatin immunoprecipitation (ChIP) quantitative real-time PCR was conducted. The protein level of HIF-1α and the phosphatidylinositide 3-kinases (PI3K)-protein kinase B (AKT) pathway were detected by western blot. HIF-1α was recovered by lentiviral transfection, and the HB-EGF mRNA levels, proliferation, invasion, and angiogenesis ability were detected. Results: B7-H3 promoted tumor progression through HB-EGF and the PI3K-AKT pathway. As B7-H3 was downregulated, HB-EGF levels were significantly reduced simultaneously, a growth trend that was shown by both CRC cell lines and cancer tissues. In addition, B7-H3 and HB-EGF had significant associations with tumor-node-metastasis (TNM) stage and lymph node metastasis in 50 CRC patients. The binding ability of HIF-1α to the HB-EGF promoter region was significantly decreased in the shB7-H3 RKO group. Western blot revealed that PI3K, AKT, and mammalian target of rapamycin (mTOR) protein amounts and p-AKT and p-mTOR phosphorylation were also downregulated in shB7-H3 RKO cells, suggesting that B7-H3 may regulate HIF-1α via PI3K-AKT signaling. After recovery of the HIF-1α level by lentiviral transfection, the HB-EGF mRNA levels, proliferation, invasion, and angiogenesis in CRC cells recovered as well. Conclusions: B7-H3 may transmit intracellular signals through PI3K-AKT-mTOR-HIF-1α signaling, upregulating HB-EGF. As the final transcription factor of the pathway, HIF-1α regulates the transcription of the HB-EGF gene, thereby promoting HB-EGF expression, which eventually mediates cell proliferation, invasion, and angiogenesis and promotes the progression of CRC.

16.
Invest Ophthalmol Vis Sci ; 65(8): 11, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38967943

ABSTRACT

Purpose: Ocular melanoma is a common primary malignant ocular tumor in adults with limited effective treatments. Epigenetic regulation plays an important role in tumor development. The switching/sucrose nonfermentation (SWI/SNF) chromatin remodeling complex and bromodomain and extraterminal domain family proteins are epigenetic regulators involved in several cancers. We aimed to screen a candidate small molecule inhibitor targeting these regulators and investigate its effect and mechanism in ocular melanoma. Methods: We observed phenotypes caused by knockdown of the corresponding gene and synergistic effects with BRD inhibitor treatment and SWI/SNF complex knockdown. The effect of JQ-1 on ocular melanoma cell cycle and apoptosis was analyzed with flow cytometry. Via RNA sequencing, we also explored the mechanism of BRD4. Results: The best tumor inhibitory effect was observed for the BRD4 inhibitor (JQ-1), although there were no statistically obvious changes in the shBRD4 and shBRD9 groups. Interestingly, the inhibitory effect of JQ-1 was decrease in the shBRD4 group. JQ-1 inhibits the growth of melanoma in various cell lines and in tumor-bearing mice. We found 17 of these 28 common differentially expressed genes were downregulated after MEL270 and MEL290 cells treated with JQ-1. Four of these 17 genes, TP53I11, SH2D5, SEMA5A, and MDGA1, were positively correlated with BRD4. In TCGA database, low expression of TP53I11, SH2D5, SEMA5A, and MDGA1 improved the overall survival rate of patients. Furthermore, the disease-free survival rate was increased in the groups with low expression of TP53I11, SH2D5, and SEMA5A. Conclusions: JQ-1 may act downstream of BRD4 and suppress ocular melanoma growth by inducing G1 cell cycle arrest.


Subject(s)
Apoptosis , Azepines , Cell Cycle Checkpoints , Cell Cycle Proteins , Melanoma , Transcription Factors , Triazoles , Animals , Melanoma/drug therapy , Melanoma/genetics , Melanoma/pathology , Melanoma/metabolism , Mice , Humans , Transcription Factors/genetics , Transcription Factors/metabolism , Azepines/pharmacology , Triazoles/pharmacology , Triazoles/therapeutic use , Cell Cycle Checkpoints/drug effects , Apoptosis/drug effects , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Cell Line, Tumor , Cell Proliferation/drug effects , Gene Expression Regulation, Neoplastic , Uveal Neoplasms/drug therapy , Uveal Neoplasms/genetics , Uveal Neoplasms/pathology , Uveal Neoplasms/metabolism , Flow Cytometry , Xenograft Model Antitumor Assays , Mice, Nude , Bromodomain Containing Proteins
17.
Int J Ophthalmol ; 17(7): 1184-1192, 2024.
Article in English | MEDLINE | ID: mdl-39026919

ABSTRACT

AIM: To evaluate the application of an intelligent diagnostic model for pterygium. METHODS: For intelligent diagnosis of pterygium, the attention mechanisms-SENet, ECANet, CBAM, and Self-Attention-were fused with the lightweight MobileNetV2 model structure to construct a tri-classification model. The study used 1220 images of three types of anterior ocular segments of the pterygium provided by the Eye Hospital of Nanjing Medical University. Conventional classification models-VGG16, ResNet50, MobileNetV2, and EfficientNetB7-were trained on the same dataset for comparison. To evaluate model performance in terms of accuracy, Kappa value, test time, sensitivity, specificity, the area under curve (AUC), and visual heat map, 470 test images of the anterior segment of the pterygium were used. RESULTS: The accuracy of the MobileNetV2+Self-Attention model with 281 MB in model size was 92.77%, and the Kappa value of the model was 88.92%. The testing time using the model was 9ms/image in the server and 138ms/image in the local computer. The sensitivity, specificity, and AUC for the diagnosis of pterygium using normal anterior segment images were 99.47%, 100%, and 100%, respectively; using anterior segment images in the observation period were 88.30%, 95.32%, and 96.70%, respectively; and using the anterior segment images in the surgery period were 88.18%, 94.44%, and 97.30%, respectively. CONCLUSION: The developed model is lightweight and can be used not only for detection but also for assessing the severity of pterygium.

18.
Heliyon ; 10(13): e33337, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39027620

ABSTRACT

Background: Sepsis complicated by ARDS significantly increases morbidity and mortality, underscoring the need for robust predictive models to enhance patient management. Methods: We collected data on 6390 patients with ARDS-complicated sepsis from the MIMIC IV database. Following rigorous data cleaning, including outlier management, handling missing values, and transforming variables, we conducted univariate analysis and logistic multivariate regression. We employed the LASSO machine learning algorithm to identify risk factors closely associated with patient outcomes. These factors were then used to develop a new clinical prediction model. The model underwent preliminary assessment and internal validation, and its performance was further tested through external validation using data from 225 patients at a major tertiary hospital in China. This validation assessed the model's discrimination, calibration, and net clinical benefits. Results: The model, illustrated by a concise nomogram, demonstrated significant discrimination with an area under the curve (AUC) of 0.711 in the internal validation set and 0.771 in the external validation set, outperforming conventional severity scores such as the SOFA and SAPS II. It also showed good calibration and net clinical benefits. Conclusions: Our model serves as a valuable tool for identifying sepsis patients with ARDS at high risk of in-hospital mortality. This could enable the implementation of personalized treatment strategies, potentially improving patient outcomes.

19.
Nanoscale ; 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39028143

ABSTRACT

SnSe2 with high theoretical capacity has been identified as an emerging anode candidate for lithium-ion batteries (LIBs) and sodium-ion batteries (SIBs). However, the rate performance and cycling performance of this material in practical applications are still limited by unavoidable volume expansion and low conductivity. In this work, we designed and synthesized nitrogen-doped carbon-coated SnSe2/C-N composites using 2-aminoterephthalic acid (C8H7NO4) as a nitrogen-containing compound for modification by hydrothermal and vacuum calcination methods to achieve efficient utilization of active sites and optimization of the electronic structure. The carbon skeleton inherited from the Sn-MOF precursor can effectively improve the electronic conduction properties of SnSe2. N-doping in the Sn-MOF can increase the positive and negative electrostatic potential energy regions on the molecular surface to further improve the electrical conductivity, and effectively reduce the binding energy with Li+/Na+ which was determined by Density Functional Theory (DFT) methods. In addition, the N-doped carbon skeleton also introduces a larger space for Li+/Na+ intercalation and enhances the mechanical properties. In particular, the post-synthetically modified MOF-derived SnSe2/C-N materials exhibit excellent cyclability, with a reversible capacity of 695 mA h g-1 for LIBs and 259 mA h g-1 for SIBs after 100 cycles at 100 mA g-1.

20.
Brain Struct Funct ; 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39020216

ABSTRACT

Accumulating evidence have documented sex differences in brain anatomy from early childhood to late adulthood. However, whether sex difference of brain structure emerges in the neonatal brain and how sex modulates the development of cortical morphology during the perinatal stage remains unclear. Here, we utilized T2-weighted MRI from the Developing Human Connectome Project (dHCP) database, consisting of 41 male and 40 female neonates born between 35 and 43 postmenstrual weeks (PMW). Neonates of each sex were arranged in a continuous ascending order of age to capture the progressive changes in cortical thickness and curvature throughout the developmental continuum. The maturational covariance network (MCN) was defined as the coupled developmental fluctuations of morphology measures between cortical regions. We constructed MCNs based on the two features, respectively, to illustrate their developmental interdependencies, and then compared the network topology between sexes. Our results showed that cortical structural development exhibited a localized pattern in both males and females, with no significant sex differences in the developmental trajectory of cortical morphology, overall organization, nodal importance, and modular structure of the MCN. Furthermore, by merging male and female neonates into a unified cohort, we identified evident dependencies influences in structural development between different brain modules using the Granger causality analysis (GCA), emanating from high-order regions toward primary cortices. Our findings demonstrate that the maturational pattern of cortical morphology may not differ between sexes during the perinatal period, and provide evidence for the developmental causality among cortical structures in perinatal brains.

SELECTION OF CITATIONS
SEARCH DETAIL
...