Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Rev Chem ; 8(5): 340-358, 2024 May.
Article in English | MEDLINE | ID: mdl-38641733

ABSTRACT

Simulating the quantum dynamics of molecules in the condensed phase represents a longstanding challenge in chemistry. Trapped-ion quantum systems may serve as a platform for the analog-quantum simulation of chemical dynamics that is beyond the reach of current classical-digital simulation. To identify a 'quantum advantage' for these simulations, performance analysis of both analog-quantum simulation on noisy hardware and classical-digital algorithms is needed. In this Review, we make a comparison between a noisy analog trapped-ion simulator and a few choice classical-digital methods on simulating the dynamics of a model molecular Hamiltonian with linear vibronic coupling. We describe several simple Hamiltonians that are commonly used to model molecular systems, which can be simulated with existing or emerging trapped-ion hardware. These Hamiltonians may serve as stepping stones towards the use of trapped-ion simulators for systems beyond the reach of classical-digital methods. Finally, we identify dynamical regimes in which classical-digital simulations seem to have the weakest performance with respect to analog-quantum simulations. These regimes may provide the lowest hanging fruit to make the most of potential quantum advantages.

2.
J Phys Chem Lett ; 14(26): 6071-6077, 2023 Jul 06.
Article in English | MEDLINE | ID: mdl-37358521

ABSTRACT

Electron transfer within and between molecules is crucial in chemistry, biochemistry, and energy science. This study describes a quantum simulation method that explores the influence of light polarization on electron transfer between two molecules. By implementing precise and coherent control among the quantum states of trapped atomic ions, we can induce quantum dynamics that mimic the electron-transfer dynamics in molecules. We use three-level systems (qutrits), rather than traditional two-level systems (qubits), to enhance the simulation efficiency and realize high-fidelity simulations of electron-transfer dynamics. We treat the quantum interference between the electron coupling pathways from a donor with two degenerate excited states to an acceptor and analyze the transfer efficiency. We also examine the potential error sources that enter the quantum simulations. The trapped-ion systems have favorable scalings with system size compared to those of classical computers, promising access to richer electron-transfer simulations.

SELECTION OF CITATIONS
SEARCH DETAIL
...