Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 600
Filter
2.
Invest Ophthalmol Vis Sci ; 65(5): 8, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38700874

ABSTRACT

Purpose: In the present study, we aim to elucidate the underlying molecular mechanism of endoplasmic reticulum (ER) stress induced delayed corneal epithelial wound healing and nerve regeneration. Methods: Human limbal epithelial cells (HLECs) were treated with thapsigargin to induce excessive ER stress and then RNA sequencing was performed. Immunofluorescence, qPCR, Western blot, and ELISA were used to detect the expression changes of SLIT3 and its receptors ROBO1-4. The role of recombinant SLIT3 protein in corneal epithelial proliferation and migration were assessed by CCK8 and cell scratch assay, respectively. Thapsigargin, exogenous SLIT3 protein, SLIT3-specific siRNA, and ROBO4-specific siRNA was injected subconjunctivally to evaluate the effects of different intervention on corneal epithelial and nerve regeneration. In addition, Ki67 staining was performed to evaluate the proliferation ability of epithelial cells. Results: Thapsigargin suppressed normal corneal epithelial and nerve regeneration significantly. RNA sequencing genes related to development and regeneration revealed that thapsigargin induced ER stress significantly upregulated the expression of SLIT3 and ROBO4 in corneal epithelial cells. Exogenous SLIT3 inhibited normal corneal epithelial injury repair and nerve regeneration, and significantly suppressed the proliferation and migration ability of cultured mouse corneal epithelial cells. SLIT3 siRNA inhibited ROBO4 expression and promoted epithelial wound healing under thapsigargin treatment. ROBO4 siRNA significantly attenuated the delayed corneal epithelial injury repair and nerve regeneration induced by SLIT3 treatment or thapsigargin treatment. Conclusions: ER stress inhibits corneal epithelial injury repair and nerve regeneration may be related with the upregulation of SLIT3-ROBO4 pathway.


Subject(s)
Cell Proliferation , Endoplasmic Reticulum Stress , Epithelium, Corneal , Nerve Regeneration , Receptors, Immunologic , Roundabout Proteins , Signal Transduction , Wound Healing , Animals , Humans , Mice , Blotting, Western , Cell Movement/physiology , Cells, Cultured , Endoplasmic Reticulum Stress/physiology , Enzyme-Linked Immunosorbent Assay , Epithelium, Corneal/metabolism , Limbus Corneae/cytology , Nerve Regeneration/physiology , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Receptors, Cell Surface/metabolism , Receptors, Cell Surface/genetics , Receptors, Immunologic/genetics , Receptors, Immunologic/metabolism , Signal Transduction/physiology , Wound Healing/physiology
3.
Anal Chem ; 96(21): 8754-8762, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38740024

ABSTRACT

Simultaneous profiling of redox-regulated markers at different cellular sublocations is of great significance for unraveling the upstream and downstream molecular mechanisms of oxidative stress in living cells. Herein, by synchronizing dual target-triggered DNA machineries in one nanoentity, we engineered a DNA walker-driven mass nanotag (MNT) assembly system (w-MNT-AS) that can be sequentially activated by oxidative stress-associated mucin 1 (MUC1) and apurinic/apyrimidinic endonuclease 1 (APE1) from plasma membrane to cytoplasm and induce recycled assembly of MNTs for multiplex detection of the two markers by matrix-assisted laser desorption ionization mass spectrometry (MALDI MS). In the working cascade, the sensing process governs the separate activation of w-MNT-AS by MUC1 and APE1 in diverse locations, while the assembly process contributes to the parallel amplification of the ion signal of the characteristic mass tags. In this manner, the differences between MCF-7, HeLa, HepG2, and L02 cells in membrane MUC1 expression and cytoplasmic APE1 activation were fully characterized. Furthermore, the oxidative stress level and dynamics caused by exogenous H2O2, doxorubicin, and simvastatin were comprehensively demonstrated by tracking the fate of the two markers across different cellular locations. The proposed w-MNT-AS coupled MS method provides an effective route to probe multiple functional molecules that lie at different locations while participating in the same cellular event, facilitating the mechanistic studies on cellular response to oxidative stress and other disease-related cellular processes.


Subject(s)
DNA-(Apurinic or Apyrimidinic Site) Lyase , DNA , Mucin-1 , Oxidative Stress , Humans , Mucin-1/metabolism , DNA/metabolism , DNA/chemistry , DNA-(Apurinic or Apyrimidinic Site) Lyase/metabolism , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Hydrogen Peroxide/metabolism
4.
Front Cardiovasc Med ; 11: 1326897, 2024.
Article in English | MEDLINE | ID: mdl-38742172

ABSTRACT

Objective: Leucine-rich α-2 glycoprotein 1 (LRG1) promotes inflammation and myocardial injury, but its clinical role in ST-elevation myocardial infarction (STEMI) is rarely disclosed. Herein, this prospective study aimed to explore the value of plasma LRG1 at different time points to predict major adverse cardiovascular event (MACE) risk in patients with STEMI. Methods: In total, 209 patients with STEMI were enrolled for determining plasma LRG1 at admission and on day (D)1/D7/D30 after admission via enzyme-linked immunosorbent assay, as well as for determination of peripheral blood T helper 17 (Th17) cells and regulatory T (Treg) cells by flow cytometry. In addition, plasma LRG1 was obtained from 30 healthy controls at enrollment. Results: LRG1 was increased in patients with STEMI at admission compared with healthy controls (P < 0.001). In patients with STEMI, LRG1 varied at different time points (P < 0.001), which elevated from admission to D1, and gradually declined thereafter. LRG1 at admission was positively associated with Th17 cells (P = 0.001) and Th17/Treg ratio (P = 0.014). LRG1 at admission (P = 0.013), D1 (P = 0.034), D7 (P = 0.001), and D30 (P = 0.010) were increased in patients with MACE compared with those without. LRG1 at D7 exhibited good ability to estimate MACE risk (area under curve = 0.750, 95% confidence interval = 0.641-0.858). LRG1 at admission > 60 µg/ml (P = 0.031) and D7 > 60 µg/ml (P = 0.018) were linked with increased accumulating MACE. Importantly, LRG1 at D7 > 60 µg/ml was independently correlated with increased MACE risk (hazard ratio = 5.216, P = 0.033). Conclusion: Plasma LRG1 increases from admission to D1 and gradually declines until D30, which positively links with Th17 cells and MACE risk in patients with STEMI.

5.
Biomacromolecules ; 2024 May 24.
Article in English | MEDLINE | ID: mdl-38785044

ABSTRACT

The desire for healthy living has created a crucial need for portable flexible health-monitoring devices based on biomaterials. Toward this end, we report a microsphere-structured hydrogel that uses bovine serum albumin (BSA) as a dielectric layer for capacitive pressure sensors. We developed a theoretical model that describes how stacking dielectric layers of spheres affects the performance of capacitive sensors. We also prepared a prototype sensor featuring the unique microsphere structure to create capacitive sensors with high sensitivity (360.91 strain sensitivity), excellent cyclical stability, and a long service life (over 5000 stretching-compression cycles). Furthermore, the design of the hydrogel sensor allows for easy integration into fabrics to create devices such as smart wristbands, which can collect a diverse range of health data. Thus, BSA-hydrogel-based sensors not only provide safe wearable devices but also advance the performance of high-sensitivity capacitive sensors.

7.
Virology ; 595: 110091, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38718446

ABSTRACT

Preliminary investigations have demonstrated that the cysteines located at the C-terminus of HEV ORF2 protein exhibits disulfide bonding capability during virus-like particles (VLPs) assembly. However, the effect and mechanism underlying the pairing of disulfide bonds formed by C627, C630, and C638 remains unclear. The p222 protein encompasses C-terminus and serves as a representative of HEV ORF2 to investigate the specific impacts of C627, C630, and C638. The three cysteines were subjected to site-directed mutagenesis and expressed in prokaryotes; Both the mutated proteins and p222 underwent polymerization except for p222A; Surprisingly, only p222 was observed as abundant spherical particles under transmission electron microscope (TEM); Stability and immunogenicity of the p222 exhibited higher than other mutated proteins; LC/MS/MS analysis identified four disulfide bonds in the p222. The novel findings suggest that the three cysteines contribute to structural and functional properties of ORF2 protein, highlighting the indispensability of each cysteine.


Subject(s)
Cysteine , Hepatitis E virus , Viral Proteins , Cysteine/chemistry , Cysteine/metabolism , Hepatitis E virus/genetics , Hepatitis E virus/chemistry , Viral Proteins/genetics , Viral Proteins/chemistry , Viral Proteins/metabolism , Mutagenesis, Site-Directed , Disulfides/chemistry , Disulfides/metabolism , Animals , Humans
8.
Nat Commun ; 15(1): 3308, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38632275

ABSTRACT

Continuous-flow biocatalysis utilizing immobilized enzymes emerged as a sustainable route for chemical synthesis. However, inadequate biocatalytic efficiency from current flow reactors, caused by non-productive enzyme immobilization or enzyme-carrier mismatches in size, hampers its widespread application. Here, we demonstrate a general-applicable and robust approach for the fabrication of a high-performance enzymatic continuous-flow reactor via integrating well-designed scalable isoporous block copolymer (BCP) membranes as carriers with an oriented and productive immobilization employing material binding peptides (MBP). Densely packed uniform enzyme-matched nanochannels of well-designed BCP membranes endow the desired nanoconfined environments towards a productive immobilized phytase. Tuning nanochannel properties can further regulate the complex reaction process and fortify the catalytic performance. The synergistic design of enzyme-matched carriers and efficient enzyme immobilization empowers an excellent catalytic performance with >1 month operational stability, superior productivity, and a high space-time yield (1.05 × 105 g L-1 d-1) via a single-pass continuous-flow process. The obtained performance makes the designed nano- and isoporous block copolymer membrane reactor highly attractive for industrial applications.


Subject(s)
Bioreactors , Enzymes, Immobilized , Enzymes, Immobilized/chemistry , Biocatalysis , Catalysis , Polymers/chemistry
9.
JAMA Netw Open ; 7(4): e247421, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38639936

ABSTRACT

Importance: In young-onset breast cancer (YOBC), a diagnosis within 5 to 10 years of childbirth is associated with increased mortality. Women with germline BRCA1/2 pathogenic variants (PVs) are more likely to be diagnosed with BC at younger ages, but the impact of childbirth on mortality is unknown. Objective: To determine whether time between most recent childbirth and BC diagnosis is associated with mortality among patients with YOBC and germline BRCA1/2 PVs. Design, Setting, and Participants: This prospective cohort study included women with germline BRCA1/2 PVs diagnosed with stage I to III BC at age 45 years or younger between 1950 and 2021 in the United Kingdom, who were followed up until November 2021. Data were analyzed from December 3, 2021, to November 29, 2023. Exposure: Time between most recent childbirth and subsequent BC diagnosis, with recent childbirth defined as 0 to less than 10 years, further delineated to 0 to less than 5 years and 5 to less than 10 years. Main Outcomes and Measures: The primary outcome was all-cause mortality, censored at 20 years after YOBC diagnosis. Mortality of nulliparous women was compared with the recent post partum groups and the 10 or more years post partum group. Cox proportional hazards regression analyses were adjusted for age, tumor stage, and further stratified by tumor estrogen receptor (ER) and BRCA gene status. Results: Among 903 women with BRCA PVs (mean [SD] age at diagnosis, 34.7 [6.1] years; mean [SD] follow-up, 10.8 [9.8] years), 419 received a BC diagnosis 0 to less than 10 years after childbirth, including 228 women diagnosed less than 5 years after childbirth and 191 women diagnosed 5 to less than 10 years after childbirth. Increased all-cause mortality was observed in women diagnosed within 5 to less than 10 years post partum (hazard ratio [HR], 1.56 [95% CI, 1.05-2.30]) compared with nulliparous women and women diagnosed 10 or more years after childbirth, suggesting a transient duration of postpartum risk. Risk of mortality was greater for women with ER-positive BC in the less than 5 years post partum group (HR, 2.35 [95% CI, 1.02-5.42]) and ER-negative BC in the 5 to less than 10 years post partum group (HR, 3.12 [95% CI, 1.22-7.97]) compared with the nulliparous group. Delineated by BRCA1 or BRCA2, mortality in the 5 to less than 10 years post partum group was significantly increased, but only for BRCA1 carriers (HR, 2.03 [95% CI, 1.15-3.58]). Conclusions and Relevance: These findings suggest that YOBC with germline BRCA PVs was associated with increased risk for all-cause mortality if diagnosed within 10 years after last childbirth, with risk highest for ER-positive BC diagnosed less than 5 years post partum, and for ER-negative BC diagnosed 5 to less than 10 years post partum. BRCA1 carriers were at highest risk for poor prognosis when diagnosed at 5 to less than 10 years post partum. No such associations were observed for BRCA2 carriers. These results should inform genetic counseling, prevention, and treatment strategies for BRCA PV carriers.


Subject(s)
Breast Neoplasms , Female , Humans , BRCA1 Protein/genetics , BRCA2 Protein/genetics , Breast Neoplasms/pathology , Genetic Predisposition to Disease , Germ Cells/pathology , Postpartum Period , Prospective Studies , Adult
10.
PLoS One ; 19(4): e0300022, 2024.
Article in English | MEDLINE | ID: mdl-38573982

ABSTRACT

BACKGROUND: Inflammation is the common pathogenesis of coronary atherosclerosis disease (CAD) and rheumatoid arthritis (RA). Although it is established that RA increases the risk of CAD, the underlining mechanism remained indefinite. This study seeks to explore the molecular mechanisms of RA linked CAD and identify potential target gene for early prediction of CAD in RA patients. MATERIALS AND METHODS: The study utilized five raw datasets: GSE55235, GSE55457, GSE12021 for RA patients, and GSE42148 and GSE20680 for CAD patients. Gene Set Enrichment Analysis (GSEA) was used to investigate common signaling pathways associated with RA and CAD. Then, weighted gene co-expression network analysis (WGCNA) was performed on RA and CAD training datasets to identify gene modules related to single-sample GSEA (ssGSEA) scores. Overlapping module genes and differentially expressed genes (DEGs) were considered as co-susceptible genes for both diseases. Three hub genes were screened using a protein-protein interaction (PPI) network analysis via Cytoscape plug-ins. The signaling pathways, immune infiltration, and transcription factors associated with these hub genes were analyzed to explore the underlying mechanism connecting both diseases. Immunohistochemistry and qRT-PCR were conducted to validate the expression of the key candidate gene, PPARG, in macrophages of synovial tissue and arterial walls from RA and CAD patients. RESULTS: The study found that Fc-gamma receptor-mediated endocytosis is a common signaling pathway for both RA and CAD. A total of 25 genes were screened by WGCNA and DEGs, which are involved in inflammation-related ligand-receptor interactions, cytoskeleton, and endocytosis signaling pathways. The principal component analysis(PCA) and support vector machine (SVM) and receiver-operator characteristic (ROC) analysis demonstrate that 25 DEGs can effectively distinguish RA and CAD groups from normal groups. Three hub genes TUBB2A, FKBP5, and PPARG were further identified by the Cytoscape software. Both FKBP5 and PPARG were downregulated in synovial tissue of RA and upregulated in the peripheral blood of CAD patients and differential mRNAexpreesion between normal and disease groups in both diseases were validated by qRT-PCR.Association of PPARG with monocyte was demonstrated across both training and validation datasets in CAD. PPARG expression is observed in control synovial epithelial cells and foamy macrophages of arterial walls, but was decreased in synovial epithelium of RA patients. Its expression in foamy macrophages of atherosclerotic vascular walls exhibits a positive correlation (r = 0.6276, p = 0.0002) with CD68. CONCLUSION: Our findings suggest that PPARG may serve as a potentially predictive marker for CAD in RA patients, which provides new insights into the molecular mechanism underling RA linked CAD.


Subject(s)
Arthritis, Rheumatoid , Atherosclerosis , Coronary Artery Disease , Humans , Arthritis, Rheumatoid/genetics , Atherosclerosis/genetics , Computational Biology , Coronary Artery Disease/genetics , Data Analysis , Gene Expression Profiling , Gene Regulatory Networks , Inflammation , PPAR gamma/genetics
11.
Mol Cancer ; 23(1): 82, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38664722

ABSTRACT

Triple-negative breast cancer (TNBC) stands as the breast cancer subtype with the highest recurrence and mortality rates, with the lungs being the common site of metastasis. The pulmonary microenvironment plays a pivotal role in the colonization of disseminated tumor cells. Herein, this study highlights the crucial role of exosomal LAP-TGF-ß1, the principal form of exosomal TGF-ß1, in reshaping the pulmonary vascular niche, thereby facilitating TNBC lung metastasis. Although various strategies have been developed to block TGF-ß signaling and have advanced clinically, their significant side effects have limited their therapeutic application. This study demonstrates that in lung metastatic sites, LAP-TGF-ß1 within exosomes can remarkably reconfigure the pulmonary vascular niche at lower doses, bolstering the extravasation and colonization of TNBC cells in the lungs. Mechanistically, under the aegis of the acetyltransferase TIP60, a non-canonical KFERQ-like sequence in LAP-TGF-ß1 undergoes acetylation at the K304 site, promoting its interaction with HSP90A and subsequent transport into exosomes. Concurrent inhibition of both HSP90A and TIP60 significantly diminishes the exosomal burden of LAP-TGF-ß1, presenting a promising therapeutic avenue for TNBC lung metastasis. This study not only offers fresh insights into the molecular underpinnings of TNBC lung metastasis but also lays a foundation for innovative therapeutic strategies.


Subject(s)
Exosomes , Lung Neoplasms , Transforming Growth Factor beta1 , Triple Negative Breast Neoplasms , Exosomes/metabolism , Humans , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Lung Neoplasms/secondary , Lung Neoplasms/genetics , Triple Negative Breast Neoplasms/metabolism , Triple Negative Breast Neoplasms/pathology , Triple Negative Breast Neoplasms/genetics , Transforming Growth Factor beta1/metabolism , Acetylation , Animals , Female , Mice , Cell Line, Tumor , Tumor Microenvironment
12.
Int Immunopharmacol ; 132: 112048, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38593509

ABSTRACT

Idiopathic pulmonary fibrosis (IPF) is a common and heterogeneous chronic disease, and the mechanism of Jinshui Huanxian formula (JHF) on IPF remains unclear. For a total of 385 lung normal tissue samples from the Gene Expression Omnibus database, 37,777,639 gene pairs were identified through microarray and RNA-seq platforms. Using the individualized differentially expressed gene (DEG) analysis algorithm RankComp (FDR < 0.01), we identified 344 genes as DEGs in at least 95 % (n = 81) of the IPF samples. Of these genes, IGF1, IFNGR1, GLI2, HMGCR, DNM1, KIF4A, and TNFRSF11A were identified as hub genes. These genes were verified using quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) in mice with pulmonary fibrosis (PF) and MRC-5 cells, and they were highly effective at classifying IPF samples in the independent dataset GSE134692 (AUC = 0.587-0.788) and mice with PF (AUC = 0.806-1.000). Moreover, JHF ameliorated the pathological changes in mice with PF and significantly reversed the changes in hub gene expression (KIF4A, IFNGR1, and HMGCR). In conclusion, a series of IPF hub genes was identified, and validated in an independent dataset, mice with PF, and MRC-5 cells. Moreover, the abnormal gene expression was normalized by JHF. These findings provide guidance for further exploration of the pathogenesis and treatment of IPF.


Subject(s)
Drugs, Chinese Herbal , Idiopathic Pulmonary Fibrosis , Idiopathic Pulmonary Fibrosis/genetics , Animals , Humans , Mice , Drugs, Chinese Herbal/pharmacology , Lung/pathology , Lung/metabolism , Mice, Inbred C57BL , Male , Gene Expression Profiling , Cell Line , Disease Models, Animal
13.
Chem Asian J ; : e202400268, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38578217

ABSTRACT

Photodynamic therapy (PDT) as an emerging therapeutic method has drawn much attention in the treatment field for cancer. Photosensitizer, which can convert photon energy into cytotoxic species under light irradiation, is the core component in PDT. The design of photosensitizers still faces problems of light absorption, targeting, penetration and oxygen dependence. With the rapid progress of material science, various photosensitizers have been developed to produce cytotoxic species for treatment of tumor with high selectivity, safety, and noninvasiveness. Besides, the applications of photosensitizers have been expanded to diverse cancer treatments such as drug release, optogenetics and immune checkpoint blockade. In this review, we summarize the recent advances of photosensitizers in various therapeutic methods for cancer. Prevailing challenges and further prospects associated with photosensitizers are also discussed.

14.
Angew Chem Int Ed Engl ; : e202402343, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38639055

ABSTRACT

Localized excitation in traditional organic photocatalysts typically prevents the generation and extraction of photo-induced free charge carriers, limiting their activity enhancement under illumination. Here, we enhance delocalized photoexcitation of small molecular photovoltaic catalysts by weakening their electron-phonon coupling via rational fluoro-substitution. The optimized 2FBP-4F catalyst we develop here exhibits a minimized Huang-Rhys factor of 0.35 in solution, high dielectric constant and strong crystallization in the solid state. As a result, the energy barrier for exciton dissociation is decreased, and more importantly, polarons are unusually observed in 2FBP-4F nanoparticles (NPs). With the increased hole transfer efficiency and prolonged charge carrier lifetime highly related to enhanced exciton delocalization, the PM6 : 2FBP-4F heterojunction NPs at varied concentration exhibit much higher optimized photocatalytic activity (207.6-561.8 mmol h-1 g-1) for hydrogen evolution than the control PM6 : BP-4F and PM6 : 2FBP-6F NPs, as well as other reported photocatalysts under simulated solar light (AM 1.5G, 100 mW cm-2).

15.
Bioeng Transl Med ; 9(2): e10619, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38435813

ABSTRACT

Refractory diabetic wounds are associated with high incidence, mortality, and recurrence rates and are a devastating and rapidly growing clinical problem. However, treating these wounds is difficult owing to uncontrolled inflammatory microenvironments and defective angiogenesis in the affected areas, with no established effective treatment to the best of our knowledge. Herein, we optimized a dual functional therapeutic agent based on the assembly of LL-37 peptides and diblock copolymer poly(ethylene glycol)-poly(propylene sulfide) (PEG-PPS). The incorporation of PEG-PPS enabled responsive or controlled LL-37 peptide release in the presence of reactive oxygen species (ROS). LL-37@PEG-PPS nanomicelles not only scavenged excessive ROS to improve the microenvironment for angiogenesis but also released LL-37 peptides and protected them from degradation, thereby robustly increasing angiogenesis. Diabetic wounds treated with LL-37@PEG-PPS exhibited accelerated and high-quality wound healing in vivo. This study shows that LL-37@PEG-PPS can restore beneficial angiogenesis in the wound microenvironment by continuously providing angiogenesis-promoting signals. Thus, it may be a promising drug for improving chronic refractory wound healing.

17.
BMC Genomics ; 25(1): 258, 2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38454325

ABSTRACT

The interactions between the rumen microbiota and the host are crucial for the digestive and absorptive processes of ruminants, and they are heavily influenced by the climatic conditions of their habitat. Owing to the harsh conditions of the high-altitude habitat, little is known about how ruminants regulate the host transcriptome and the composition of their rumen microbiota. Using the model species of goats, we examined the variations in the rumen microbiota, transcriptome regulation, and climate of the environment between high altitude (Lhasa, Xizang; 3650 m) and low altitude (Chengdu, Sichuan, China; 500 m) goats. The results of 16 S rRNA sequencing revealed variations in the abundance, diversity, and composition of rumen microbiota. Papillibacter, Quinella, and Saccharofermentans were chosen as potential microbes for the adaptation of Xizang goats to the harsh climate of the plateau by the Spearman correlation study of climate and microbiota. Based on rumen transcriptome sequencing analysis, 244 genes were found to be differentially expressed between Xizang goats and low-altitude goats, with 127 genes showing up-regulation and 117 genes showing down-regulation. SLC26A9, GPX3, ARRDC4, and COX1 were identified as potential candidates for plateau adaptation in Xizang goats. Moreover, the metabolism of fatty acids, arachidonic acids, pathway involving cytokines and their receptors could be essential for adaptation to plateau hypoxia and cold endurance. The expression of GPX3, a gene linked to plateau acclimatization in Xizang goats, was linked to the abundance of Anaerovibrio, and the expression of SLC26A9 was linked to the quantity of Selenomonas, according to ruminal microbiota and host Spearman correlation analysis. Our findings imply that in order to adapt harsh plateau conditions, Xizang goats have evolved to maximize digestion and absorption as well as to have a rumen microbiota suitable for the composition of their diet.


Subject(s)
Goats , Microbiota , Animals , Goats/metabolism , Transcriptome , Rumen/metabolism , Microbiota/genetics , Adaptation, Psychological
18.
Dev Cell ; 59(7): 924-939.e6, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38359831

ABSTRACT

Brassinosteroid (BR) signaling leads to the nuclear accumulation of the BRASSINAZOLE-RESISTANT 1 (BZR1) transcription factor, which plays dual roles in activating or repressing the expression of thousands of genes. BZR1 represses gene expression by recruiting histone deacetylases, but how it activates transcription of BR-induced genes remains unclear. Here, we show that BR reshapes the genome-wide chromatin accessibility landscape, increasing the accessibility of BR-induced genes and reducing the accessibility of BR-repressed genes in Arabidopsis. BZR1 physically interacts with the BRAHMA-associated SWI/SNF (BAS)-chromatin-remodeling complex on the genome and selectively recruits the BAS complex to BR-activated genes. Depletion of BAS abrogates the capacities of BZR1 to increase chromatin accessibility, activate gene expression, and promote cell elongation without affecting BZR1's ability to reduce chromatin accessibility and expression of BR-repressed genes. Together, these data identify that BZR1 recruits the BAS complex to open chromatin and to mediate BR-induced transcriptional activation of growth-promoting genes.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/metabolism , Brassinosteroids/metabolism , Chromatin/genetics , Chromatin/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Transcriptional Activation , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Gene Expression Regulation, Plant
19.
J Clin Transl Sci ; 8(1): e32, 2024.
Article in English | MEDLINE | ID: mdl-38384895

ABSTRACT

Background: Cancer health research relies on large-scale cohorts to derive generalizable results for different populations. While traditional epidemiological cohorts often use costly random sampling or self-motivated, preselected groups, a shift toward health system-based cohorts has emerged. However, such cohorts depend on participants remaining within a single system. Recent consumer engagement models using smartphone-based communication, driving projects, and social media have begun to upend these paradigms. Methods: We initiated the Healthy Oregon Project (HOP) to support basic and clinical cancer research. HOP study employs a novel, cost-effective remote recruitment approach to effectively establish a large-scale cohort for population-based studies. The recruitment leverages the unique email account, the HOP website, and social media platforms to direct smartphone users to the study app, which facilitates saliva sample collection and survey administration. Monthly newsletters further facilitate engagement and outreach to broader communities. Results: By the end of 2022, the HOP has enrolled approximately 35,000 participants aged 18-100 years (median = 44.2 years), comprising more than 1% of the Oregon adult population. Among those who have app access, ∼87% provided consent to genetic screening. The HOP monthly email newsletters have an average open rate of 38%. Efforts continue to be made to improve survey response rates. Conclusion: This study underscores the efficacy of remote recruitment approaches in establishing large-scale cohorts for population-based cancer studies. The implementation of the study facilitates the collection of extensive survey and biological data into a repository that can be broadly shared and supports collaborative clinical and translational research.

20.
Mol Ther ; 32(5): 1461-1478, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38414246

ABSTRACT

Osteoarthritis (OA) is an age-related or post-traumatic degenerative whole joint disease characterized by the rupture of articular cartilage homeostasis, the regulatory mechanisms of which remain elusive. This study identifies the essential role of heterogeneous nuclear ribonucleoprotein K (hnRNPK) in maintaining articular cartilage homeostasis. Hnrnpk expression is markedly downregulated in human and mice OA cartilage. The deletion of Hnrnpk effectively accelerates the development of post-traumatic and age-dependent OA in mice. Mechanistically, the KH1 and KH2 domain of Hnrnpk bind and degrade the mRNA of WWC1. Hnrnpk deletion increases WWC1 expression, which in turn leads to the activation of Hippo signaling and ultimately aggravates OA. In particular, intra-articular injection of LPA and adeno-associated virus serotype 5 expressing WWC1 RNA interference ameliorates cartilage degeneration induced by Hnrnpk deletion, and intra-articular injection of adeno-associated virus serotype 5 expressing Hnrnpk protects against OA. Collectively, this study reveals the critical roles of Hnrnpk in inhibiting OA development through WWC1-dependent downregulation of Hippo signaling in chondrocytes and defines a potential target for the prevention and treatment of OA.


Subject(s)
Cartilage, Articular , Chondrocytes , Heterogeneous-Nuclear Ribonucleoprotein K , Hippo Signaling Pathway , Osteoarthritis , Protein Serine-Threonine Kinases , Signal Transduction , Animals , Humans , Male , Mice , Cartilage, Articular/metabolism , Cartilage, Articular/pathology , Chondrocytes/metabolism , Dependovirus/genetics , Disease Models, Animal , Gene Expression Regulation , Heterogeneous-Nuclear Ribonucleoprotein K/metabolism , Heterogeneous-Nuclear Ribonucleoprotein K/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Intracellular Signaling Peptides and Proteins/genetics , Osteoarthritis/metabolism , Osteoarthritis/genetics , Osteoarthritis/etiology , Osteoarthritis/pathology , Osteoarthritis/therapy , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...