Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Biol Macromol ; 273(Pt 1): 133026, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38852722

ABSTRACT

A novel glycoside hydrolase (GH) family 16 multi-domain ß-1,3-1,4-glucanase (FsGlc16A) from Fibrobacter sp. UWP2 was identified, heterogeneously expressed, and its enzymatic properties, protein structure and application potential were characterized. Enzymological characterization showed that FsGlc16A performed the optimal catalytic activity at pH 4.5 and 50 °C with a specific activity of 3263 U/mg. FsGlc16A exhibited the substrate specificity towards oat ß-glucan, barley ß-glucan and lichenan, and in addition, it hydrolyzed oat ß-glucan and lichenan into different ß-glucooligosaccharides with polymerization degrees of 3-4, which further illustrated that it belonged to the endo-type ß-1,3-1,4-glucanase. FsGlc16A was classified in subfamily25 of GH16. A 'PXSSSS' repeats domain was identified at the C-terminus of FsGlc16A, which was distinct from the typical GH family 16 ß-1,3-1,4-glucanases. Removing the 'PXSSSS' repeats domain affected the binding of the substrate to FsGlc16A and reduced the enzyme activity. FsGlc16A displayed good potential for the applications, which hydrolyzed oat bran into ß-glucooligosaccharides, and reduced filtration time (18.89 %) and viscosity (3.64 %) in the saccharification process. This study investigated the enzymatic properties and domain function of FsGlc16A, providing new ideas and insights into the study of ß-1,3-1,4-glucanase.


Subject(s)
Glucans , Substrate Specificity , Hydrolysis , Glucans/chemistry , Glucans/metabolism , Hydrogen-Ion Concentration , Amino Acid Sequence , Temperature , Protein Domains , beta-Glucans/metabolism , beta-Glucans/chemistry , Glycoside Hydrolases/chemistry , Glycoside Hydrolases/metabolism , Kinetics , Endo-1,3(4)-beta-Glucanase/chemistry , Endo-1,3(4)-beta-Glucanase/metabolism , Endo-1,3(4)-beta-Glucanase/genetics , Cloning, Molecular , Phylogeny , Enzyme Stability
2.
J Agric Food Chem ; 71(27): 10383-10392, 2023 Jul 12.
Article in English | MEDLINE | ID: mdl-37376774

ABSTRACT

ß-1,3-Glucan-degrading enzymes are widely used in fields such as food processing, plant protection, and breweries. In this work, we identified a glycoside hydrolase (GH) family 157 endo-ß-1,3-glucanase (BsGlc157A) from Bacteroides sp. M27 and characterized its biochemical properties, structural model, and antifungal activity. Enzymological characterization indicated that BsGlc157A performs its optimal catalytic activity at pH 6.0 and 40 °C. BsGlc157A adopted the classic (ß/α)8 TIM-barrel structure. Two catalytic residues, the nucleophile (Glu215) and the proton donor (Glu123), were confirmed via structural modeling and site-directed mutagenesis. Moreover, BsGlc157A hydrolyzed curdlan into a series of oligosaccharides with polymerization degrees 2-5 and exhibited inhibitory effects on the hyphal growth of typical fruit pathogenic fungi (Monilinia fructicola, Alternaria alternata, and Colletotrichum gloeosporioides), thereby illustrating effective biocontrol activity. These results revealed the catalytic properties and the application potential of GH family 157 ß-1,3-glucanase, thus providing valuable biochemistry information about the group of carbohydrate-active enzymes.


Subject(s)
Antifungal Agents , Bacterial Proteins , Antifungal Agents/pharmacology , Bacterial Proteins/genetics , Bacterial Proteins/chemistry , Glycoside Hydrolases/chemistry , Glucans/chemistry , Oligosaccharides/pharmacology , Substrate Specificity
3.
Biochem Genet ; 61(1): 87-100, 2023 Feb.
Article in English | MEDLINE | ID: mdl-35732962

ABSTRACT

Prior studies have noted the importance of microRNAs (miRNAs) in development and progression of osteosarcoma (OS), but the influence of miR-301b is less investigated. This investigation aimed to explore the biological role of miR-301b/SNX10 in OS. GSE28423 and GSE28424 arrays delivered the corresponding miR-301b and sorting nexin 10 (SNX10) expression levels in OS samples. miR-301b and SNX10 expressions were also measured by quantitative reverse transcription-polymerase chain reaction (qRT-PCR) and western blotting in cells. Cell counting kit (CCK)-8 and transwell analysis were applied to measure cell characteristics. Luciferase reporter assay and Pearson correlation analysis were used to detect the relevance between miR-301b and SNX10. miR-301b was extremely increased in OS tissues compared with normal tissues, while SNX10 was decreased. The proliferation, invasion, and migration capabilities were limited following a low expression level of miR-301b whereas miR-301b overexpression promoted cellular malignant behaviors. miR-301b negatively targeted SNX10. The elevated SNX10 expression highlighted the inhibitory function on cell proliferation, migration, and invasion in OS cells treated by miR-301b inhibitor. Reduction of miR-301b induced the decrease of epithelial-mesenchymal transition (EMT)-related markers including N-cadherin, Vimentin, and matrix metallo-proteinase 9 (MMP)9. These results are added to the complete expanding field of the potential effects of miR-301b in OS cell malignant behaviors and demonstrate its promising role for further use to treat human OS.


Subject(s)
Bone Neoplasms , MicroRNAs , Osteosarcoma , Humans , Cell Movement , Bone Neoplasms/genetics , Bone Neoplasms/metabolism , Bone Neoplasms/pathology , Cell Line, Tumor , Osteosarcoma/genetics , Osteosarcoma/metabolism , Osteosarcoma/pathology , Cell Proliferation , Gene Expression Regulation, Neoplastic , Sorting Nexins/genetics , Sorting Nexins/metabolism
4.
BMC Musculoskelet Disord ; 23(1): 1087, 2022 Dec 13.
Article in English | MEDLINE | ID: mdl-36514046

ABSTRACT

BACKGROUND: Spondyloepiphyseal dysplasia tarda (SEDT) is a rare, hereditary, X-linked skeletal disorder. To our knowledge, there are few reports about orthopedic surgery in these patients. This is the first report on patients with SEDT undergoing spinal and fracture reduction surgery. CASE PRESENTATION: A 31-year-old male patient who had been misdiagnosed with juvenile idiopathic arthritis (JIA) for 20 years and who had been treated with femoral shaft internal fixation for lower extremity fracture caused by minor trauma presented at hospital with stiffness and weakness in the lower extremities for the past two years. Radiographs showed bony dysplastic features of flattened vertebral bodies, Scheuermann-like changes in the spine, and osteoarthritis-like changes in the joints. Laboratory examination, including routine blood tests and rheumatism-related indicators showed negative results. Considering the history, radiology, and genetic findings, a diagnosis of spondyloepiphyseal dysplasia tarda with progressive arthropathy (SEDT-PA) was considered. Further neurological examination indicated that severe spinal cord compression was an important reason for the patient's inability to walk. Laminectomy, spinal canal decompression, internal fixation and fusion were performed. Clinical outcome was satisfactory at one-year follow-up. The lower-limb fatigue was relieved, the patient could walk independently, and his examination showed osseous fusion. The English database was searched and the literature was reviewed for the relevant keywords of "SEDT-PA". CONCLUSIONS: Progress has been made in genetic research on SEDT; early diagnosis is particularly important, but the clinical diagnosis and treatment plans are still evaluated on a case-by-case basis. The best treatment for SEDT is to identify patients with progressive neurological and joint-mobility impairments and perform appropriate surgical intervention. Surgical intervention can improve neurological function and quality of life. However, surgery, as palliative care, does not alter the progression of the disease.


Subject(s)
Intervertebral Disc Displacement , Osteoarthritis , Osteochondrodysplasias , Male , Humans , Adult , Osteochondrodysplasias/complications , Osteochondrodysplasias/diagnostic imaging , Osteochondrodysplasias/surgery , Quality of Life , Radiography
5.
J Mater Chem B ; 8(36): 8383-8394, 2020 09 23.
Article in English | MEDLINE | ID: mdl-32803210

ABSTRACT

Efficient delivery of chemotherapeutic agents into tumor cells and reversal of chemoresistance are crucially important to enhance cancer therapy. We fabricated pH/redox dual responsive nanocarriers based on cell penetrating peptides (TAT) functionalized TPGS (cTAT-TPGS) and polypeptide (PEG-b-poly(aspartic-lipoic acid), PPAL) to reduce the permanent drug release and overcome multidrug resistance. TAT was used to functionalize TPGS and shielded by pH-responsive fatty acids, and polypeptides with lipoic acid side chains (PPAL) were synthesized. Reversibly crosslinked hybrid micelles (RCMs) were fabricated based on cTAT-TPGS and PPAL. RCMs nanocarriers exhibited acid-responsive charge reversal and redox-responsive drug release. The in vitro results showed that the RCMs could be efficiently internalized by the MCF-7/ADR cells in an acidic microenvironment and inhibited the DOX efflux, causing a higher cytotoxicity than non-crosslinked nanocarriers. Furthermore, the dual-responsive structure effectively prolonged the circulation time of RCM nanocarriers and achieved a high level of accumulation in cancer cells in vivo, leading to much more effective inhibition of tumor growth. The DOX-loaded RCMs also showed excellent biosafety, especially for the myocardium tissue. This novel strategy provided an effective platform for drug target delivery and reversal of MDR.


Subject(s)
Antineoplastic Agents/therapeutic use , Doxorubicin/therapeutic use , Drug Carriers/chemistry , Drug Resistance, Multiple/drug effects , Drug Resistance, Neoplasm/drug effects , Neoplasms/drug therapy , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacokinetics , Apoptosis/drug effects , Cell-Penetrating Peptides/chemistry , Cell-Penetrating Peptides/pharmacokinetics , Doxorubicin/chemistry , Doxorubicin/pharmacokinetics , Drug Carriers/pharmacokinetics , Drug Liberation , Female , Fluorescence , Humans , MCF-7 Cells , Mice, Inbred BALB C , Micelles , Polyethylene Glycols/chemistry , Polyethylene Glycols/pharmacokinetics , Vitamin E/pharmacokinetics , Vitamin E/therapeutic use
6.
Laryngoscope ; 130(11): E646-E653, 2020 11.
Article in English | MEDLINE | ID: mdl-31872448

ABSTRACT

OBJECTIVE: To investigate the feasibility of dynamic computed tomography in recording and describing the spatial motion characteristics of the arytenoid cartilage. METHODS: Dynamic computed tomography recorded the real-time motion trajectory of the arytenoid cartilage during inspiration and phonation. A stationary coordinate system was established with the cricoid cartilage as a reference and a motion coordinate system was established using the movement of the arytenoid cartilage. The Euler angles of the arytenoid cartilage movement were calculated by transformation of the two coordinate systems, and the spatial motion characteristics of the arytenoid cartilage were quantitatively studied. RESULTS: Displacement of the cricoid cartilage was primarily inferior during inspiration. During phonation, the displacement was mainly superior. When the glottis closed, the superior displacement was about 5-8 mm within 0.56 s. During inspiration, the arytenoid cartilage was displaced superiorly approximately 1-2 mm each 0.56 s. The rotation angle was subtle with slight rotation around the XYZ axis, with a range of 5-10 degrees. During phonation, the displacement of the arytenoid cartilage was mainly inferior (about 4-6 mm), anterior (about 2-4 mm) and medial (about 1-2 mm). The motion of the arytenoid cartilage mainly consisted of medial rolling, and there was an alternating movement of anterior-posterior tilting. The arytenoid cartilage rolled medially (about 20-40 degrees within 0.56 s), accompanied by anterior-posterior tilting (about 15-20 degrees within 0.56 s). CONCLUSION: Dynamic computed tomography recordings of arytenoid cartilage movement can be combined with Euler transformations as a tool to study the spatial characteristics of laryngeal structures during phonation. LEVEL OF EVIDENCE: 4 Laryngoscope, 130:E646-E653, 2020.


Subject(s)
Arytenoid Cartilage/diagnostic imaging , Cricoid Cartilage/diagnostic imaging , Tomography, X-Ray Computed/methods , Arytenoid Cartilage/physiology , Calibration , Cricoid Cartilage/physiology , Feasibility Studies , Female , Glottis/diagnostic imaging , Glottis/physiopathology , Humans , Larynx/diagnostic imaging , Larynx/physiology , Male , Medical Illustration , Middle Aged , Motion , Phonation/physiology , Rotation
7.
Sci Rep ; 9(1): 7960, 2019 05 28.
Article in English | MEDLINE | ID: mdl-31138861

ABSTRACT

This study explored the applicability, cellular efficacy, and osteogenic activities of porous nano-hydroxyapatite/Poly (glycerol sebacate)-grafted maleic anhydride (n-HA/PGS-g-M) composite scaffolds. Nuclear magnetic resonance (NMR) analyses indicated that approximately 43% of the hydroxide radicals in PGS were displaced by maleic anhydride. Resonance bands at 1036 cm-1 occurred in scaffolds containing nHA powders, and peak areas increased when n-HA weight increased in PGS-M-n-HA-0.4, PGS-M-n-HA-0.5, and PGS-M-n-HA-0.6 scaffolds. The n-HA/PGS-g-M composite scaffolds exhibited porous microstructure with average pore size of 150-300 µm in scanning electron microscopy (SEM) analysis. Differential scanning calorimetry (DSC) identified the glass transition temperature (Tg) as -25-30 °C, indicative of quality resilience. The modulus of compressibility increased when n-HA content increased. Interestingly, viability of human adipose-derived stem cells (hADSCs) in vitro and expression of the osteogenic related genes RUNX2, OCN, and COL1A1 was enhanced in the n-HA/PGS-g-M composite scaffolds compared to those factors observed in PGS-g-M scaffolds. Finally, simulated body fluid (SBF) tests indicated more apatite deposits on the surface of n-HA/PGS-g-M scaffolds compared to PGS-g-M scaffolds. Overall, porous n-HA/PGS-g-M composite scaffolds possessed acceptable biocompatibility and mechanical properties, and they stimulated hADSC cell proliferation and differentiation. Given these qualities, the composite scaffolds have potential applications in bone tissue engineering.


Subject(s)
Decanoates/chemistry , Durapatite/pharmacology , Glycerol/analogs & derivatives , Mesenchymal Stem Cells/drug effects , Osteoblasts/drug effects , Osteogenesis/drug effects , Polymers/chemistry , Tissue Scaffolds , Biomarkers/metabolism , Cell Adhesion/drug effects , Cell Differentiation/drug effects , Cell Proliferation/drug effects , Cell Survival/drug effects , Collagen Type I/genetics , Collagen Type I/metabolism , Collagen Type I, alpha 1 Chain , Core Binding Factor Alpha 1 Subunit/genetics , Core Binding Factor Alpha 1 Subunit/metabolism , Durapatite/chemistry , Gene Expression , Glycerol/chemistry , Humans , Maleic Anhydrides/chemistry , Materials Testing , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/metabolism , Osteoblasts/cytology , Osteoblasts/metabolism , Osteocalcin/genetics , Osteocalcin/metabolism , Osteogenesis/genetics , Porosity , Primary Cell Culture , Tissue Engineering/methods
8.
Front Microbiol ; 6: 1422, 2015.
Article in English | MEDLINE | ID: mdl-26733967

ABSTRACT

Microbial bioremediation is a promising technology to treat heavy metal-contaminated soils. However, the efficiency of filamentous fungi as bioremediation agents remains unknown, and the detoxification mechanism of heavy metals by filamentous fungi remains unclear. Therefore, in this study, we investigated the cell morphology and antioxidant systems of Penicillium chrysogenum XJ-1 in response to different cadmium (Cd) concentrations (0-10 mM) by using physico-chemical and biochemical methods. Cd in XJ-1 was mainly bound to the cell wall. The malondialdehyde level in XJ-1 cells was increased by 14.82-94.67 times with the increase in Cd concentration. The activities of superoxide dismutase, glutathione reductase (GR), and glucose-6-phosphate dehydrogenase (G6PDH) peaked at 1 mM Cd, whereas that of catalase peaked at 5 mM Cd. Cd exposure increased the glutathione/oxidized glutathione ratio and the activities of GR and G6PDH in XJ-1. These results suggested that the Cd detoxification mechanism of XJ-1 included biosorption, cellular sequestration, and antioxidant defense. The application of XJ-1 in Cd-polluted soils (5-50 mg kg(-1)) successfully reduced bioavailable Cd and increased the plant yield, indicating that this fungus was a promising candidate for in situ bioremediation of Cd-polluted soil.

SELECTION OF CITATIONS
SEARCH DETAIL
...