Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Curr Top Med Chem ; 22(17): 1426-1441, 2022.
Article in English | MEDLINE | ID: mdl-36028933

ABSTRACT

Cancer being one of the leading causes of death among non-communicable diseases, has already posed a heavy burden on the world health system. Chemotherapy is one of the most effective approaches for cancer treatment, but multidrug resistance, lack of efficacy, and toxic side effects hamper efficacious cancer chemotherapy, creating an urgent need to develop novel, more effective and less toxic anticancer therapeutics. Quinoxalines, as fascinating structures, constitute an important class of heterocycles in drug discovery. Quinoxaline hybrids could exert anticancer activity through diverse mechanisms and possess profound in vitro and in vivo efficacy against various cancers, including multidrug-resistant forms. Thus, quinoxaline hybrids represent useful templates for the control and eradication of cancer. The purpose of the present review article is to provide an emphasis on the recent developments (Jan. 2017-Jan. 2022) in quinoxaline hybrids with insights into their in vitro and in vivo anticancer potential as well as structure-activity relationships (SARs) to facilitate further rational design of more effective candidates.


Subject(s)
Antineoplastic Agents , Neoplasms , Drug Discovery , Humans , Quinoxalines , Structure-Activity Relationship
2.
Arch Pharm (Weinheim) ; 355(7): e2200052, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35419808

ABSTRACT

Cancer, as a long-lasting and dramatic disease, affects almost one-third of human beings globally. Chemotherapeutics play an important role in cancer treatment, but multidrug resistance and severe adverse effects have already become the main causes of failure in tumor chemotherapy. Therefore, it is an urgent need to develop novel chemotherapeutics. Cinnamic acid contains a ubiquitous α,ß-unsaturated acid moiety presenting potential therapeutic effects in the treatment of cancer as these derivatives could act on cancer cells by diverse mechanisms of action. Accordingly, cinnamic acid derivatives are critical scaffolds in discovering novel anticancer agents. This review provides a comprehensive overview of cinnamic acid hybrids as anticancer agents. The structure-activity relationship, as well as the mechanisms of action, are also discussed, covering articles published from 2012 to 2021.


Subject(s)
Antineoplastic Agents , Neoplasms , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Cinnamates/pharmacology , Humans , Neoplasms/drug therapy , Neoplasms/pathology , Structure-Activity Relationship
3.
Arch Pharm (Weinheim) ; 355(6): e2200051, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35385159

ABSTRACT

Cancer, characterized by a deregulation of the cell cycle which mainly results in a progressive loss of cellular differentiation and uncontrolled cellular growth, remains a prominent cause of death across the world. Almost all currently available anticancer agents used in clinical practice have developed multidrug resistance, creating an urgent need to develop novel chemotherapeutics. Benzimidazole derivatives could exert anticancer properties through diverse mechanisms, inclusive of the disruption of microtubule polymerization, the induction of apoptosis, cell cycle (G2/M) arrest, antiangiogenesis, and blockage of glucose transport. Moreover, several benzimidazole-based agents have already been approved for the treatment of cancers. Hence, benzimidazole derivatives are useful scaffolds for the development of novel anticancer agents. In particular, benzimidazole hybrids could exert dual or multiple antiproliferative activities and had the potential to overcome drug resistance, demonstrating the potential of benzimidazole hybrids as potential prototypes for clinical deployment in the control and eradication of cancers. The purpose of the present review article is to provide a comprehensive landscape of benzimidazole hybrids as potential anticancer agents, and the structure-activity relationship as well as mechanisms of action are also discussed to facilitate the further rational design of more effective candidates, covering articles published from 2019 to 2021.


Subject(s)
Antineoplastic Agents , Neoplasms , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Benzimidazoles/pharmacology , Cell Proliferation , Drug Screening Assays, Antitumor , Humans , Molecular Structure , Neoplasms/drug therapy , Structure-Activity Relationship
4.
ACS Med Chem Lett ; 12(6): 1005-1010, 2021 Jun 10.
Article in English | MEDLINE | ID: mdl-34141085

ABSTRACT

We report herein the discovery of quinazolindiones as potent and selective tankyrase inhibitors. Elucidation of the structure-activity relationship of the lead compound 1g led to truncated analogues that have good potency in cells, pharmacokinetic (PK) properties, and excellent selectivity. Compound 21 exhibited excellent potencies in cells and proliferation studies, good selectivity, in vitro activities, and an excellent PK profile. Compound 21 also inhibited H292 xenograft tumor growth in nude mice. The synthesis, biological, pharmacokinetic, in vivo efficacy studies, and safety profiles of compounds are presented.

5.
ACS Med Chem Lett ; 9(7): 623-628, 2018 Jul 12.
Article in English | MEDLINE | ID: mdl-30034590

ABSTRACT

Abdominal pain and abnormal bowel habits represent major symptoms for irritable bowel syndrome (IBS) patients that are not adequately managed. Although the etiology of IBS is not completely understood, many of the functions of the gastrointestinal (GI) tract are regulated by the enteric nervous system (ENS). Inflammation or stress-induced expression of growth factors or cytokines may lead to hyperinnervation of visceral afferent neurons in GI tract and contribute to the pathophysiology of IBS. Rearranged during transfection (RET) is a neuronal growth factor receptor tyrosine kinase critical for the development of the ENS as exemplified by Hirschsprung patients who carry RET loss-of-function mutations and lack normal colonic innervation leading to colonic obstruction. Similarly, RET signaling in the adult ENS maintains neuronal function by contributing to synaptic formation, signal transmission, and neuronal plasticity. Inhibition of RET in the ENS represents a novel therapeutic strategy for the normalization of neuronal function and the symptoms of IBS patients. Herein, we describe our screening effort and subsequent structure-activity relationships (SARs) in optimizing potency, selectivity, and mutagenicity of the series, which led to the discovery of a first-in-class, gut-restricted RET kinase inhibitor, 2-(4-(4-ethoxy-6-oxo-1,6-dihydropyridin-3-yl)-2-fluorophenyl)-N-(5-(1,1,1-trifluoro-2-methylpropan-2-yl)isoxazol-3-yl)acetamide (15, GSK3179106), as a clinical candidate for the treatment of IBS. GSK3179106 is a potent, selective, and gut-restricted pyridone hinge binder small molecule RET kinase inhibitor with a RET IC50 of 0.3 nM and is efficacious in vivo.

SELECTION OF CITATIONS
SEARCH DETAIL
...