Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
Add more filters










Publication year range
1.
Small ; : e2310416, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38660815

ABSTRACT

Synergistic therapy has shown greater advantages compared with monotherapy. However, the complex multiple-administration plan and potential side effects limit its clinical application. A transformable specific-responsive peptide (TSRP) is utilized to one-step achieve synergistic therapy integrating anti-tumor, anti-angiogenesis and immune response. The TSRP is composed of: i) Recognition unit could specifically target and inhibit the biological function of FGFR-1; ii) Transformable unit could self-assembly and trigger nanofibers formation; iii) Reactive unit could specifically cleaved by MMP-2/9 in tumor micro-environment; iv) Immune unit, stimulate the release of immune cells when LTX-315 (Immune-associated oncolytic peptide) exposed. Once its binding to FGFR-1, the TSRP could cleaved by MMP-2/9 to form the nanofibers on the cell membrane, with a retention time of up to 12 h. Through suppressing the phosphorylation levels of ERK 1/2 and PI3K/AKT signaling pathways downstream of FGFR-1, the TSRP significant inhibit the growth of tumor cells and the formation of angioginesis. Furthermore, LTX-315 is exposed after TSRP cleavage, resulting in Calreticulin activation and CD8+ T cells infiltration. All above processes together contribute to the increasing survival rate of tumor-bearing mice by nearly 4-folds. This work presented a unique design for the biological application of one-step synergistic therapy of bladder cancer.

2.
Cell Regen ; 13(1): 9, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38630195

ABSTRACT

Human hematopoiesis starts at early yolk sac and undergoes site- and stage-specific changes over development. The intrinsic mechanism underlying property changes in hematopoiesis ontogeny remains poorly understood. Here, we analyzed single-cell transcriptome of human primary hematopoietic stem/progenitor cells (HSPCs) at different developmental stages, including yolk-sac (YS), AGM, fetal liver (FL), umbilical cord blood (UCB) and adult peripheral blood (PB) mobilized HSPCs. These stage-specific HSPCs display differential intrinsic properties, such as metabolism, self-renewal, differentiating potentialities etc. We then generated highly co-related gene regulatory network (GRNs) modules underlying the differential HSC key properties. Particularly, we identified GRNs and key regulators controlling lymphoid potentiality, self-renewal as well as aerobic respiration in human HSCs. Introducing selected regulators promotes key HSC functions in HSPCs derived from human pluripotent stem cells. Therefore, GRNs underlying key intrinsic properties of human HSCs provide a valuable guide to generate fully functional HSCs in vitro.

3.
Mol Ther Methods Clin Dev ; 32(1): 101204, 2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38390556

ABSTRACT

Genetically engineered macrophages (GEMs) have emerged as an appealing strategy to treat cancers, but they are largely impeded by the cell availability and technical challenges in gene transfer. Here, we develop an efficient approach to generate large-scale macrophages from human induced pluripotent stem cells (hiPSCs). Starting with 1 T150 dish of 106 hiPSCs, more than 109 mature macrophages (iMacs) could be generated within 1 month. The generated iMacs exhibit typical macrophage properties such as phagocytosis and polarization. We then generate hiPSCs integrated with an IL-12 expression cassette in the AAVS1 locus to produce iMacs secreting IL-12, a strong proimmunity cytokine. hiPSC-derived iMacs_IL-12 prevent cytotoxic T cell exhaustion and activate T cells to kill different cancer cells. Furthermore, iMacs_IL-12 display strong antitumor effects in a T cell-dependent manner in subcutaneously or systemically xenografted mice of human lung cancer. Therefore, we provide an off-the-shelf strategy to produce large-scale GEMs for cancer therapy.

5.
Stem Cell Reports ; 19(2): 196-210, 2024 Feb 13.
Article in English | MEDLINE | ID: mdl-38215759

ABSTRACT

Emergency myelopoiesis (EM) is essential in immune defense against pathogens for rapid replenishing of mature myeloid cells. During the EM process, a rapid cell-cycle switch from the quiescent hematopoietic stem cells (HSCs) to highly proliferative myeloid progenitors (MPs) is critical. How the rapid proliferation of MPs during EM is regulated remains poorly understood. Here, we reveal that ATG7, a critical autophagy factor, is essential for the rapid proliferation of MPs during human myelopoiesis. Peripheral blood (PB)-mobilized hematopoietic stem/progenitor cells (HSPCs) with ATG7 knockdown or HSPCs derived from ATG7-/- human embryonic stem cells (hESCs) exhibit severe defect in proliferation during fate transition from HSPCs to MPs. Mechanistically, we show that ATG7 deficiency reduces p53 localization in lysosome for a potential autophagy-mediated degradation. Together, we reveal a previously unrecognized role of autophagy to regulate p53 for a rapid proliferation of MPs in human myelopoiesis.


Subject(s)
Myelopoiesis , Tumor Suppressor Protein p53 , Humans , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Hematopoietic Stem Cells/metabolism , Myeloid Cells , Autophagy/genetics
6.
Mol Biol Rep ; 51(1): 166, 2024 Jan 22.
Article in English | MEDLINE | ID: mdl-38252343

ABSTRACT

BACKGROUND: Genomic imprinting refers to expressing parent-specific genes in mammalian diploid cells. The NDN gene is maternally imprinted in humans and mice and correlates with the timing of puberty. This study aimed to investigate its imprinting status and its relationship with the onset of puberty in Dolang sheep. METHODS AND RESULTS: In this study, cloning and sequencing obtained the NDN gene cDNA sequence of 1082 bp of Dolang sheep, coding for 325 amino acids. Similarity analysis and phylogenetic tree showed that the NDN gene conformed to the law of speciation and was highly conserved among mammals. RT-qPCR results showed the highest expression of NDN mRNA was found in the hypothalamus at puberty, and the expression was significantly increased and then significantly decreased from prepuberty to postpuberty in the hypothalamus, pituitary, and ovary and oviduct. Based on expressed single nucleotide polymorphism (SNP), the NDN gene was expressed monoallelically in the tissues of adult and neonatal umbilical cords, and the expressed allele was paternally inherited. The NDN promoter region of 3400 bp was obtained by cloning and identified in monoallelic-expressing tissues (hypothalamus, ovary, spleen) as a differentially methylated region (DMR). CONCLUSION: These findings will enrich the number of imprinted genes in sheep and suggest that the NDN gene could be a candidate gene for studying puberty initiation in Dolang sheep.


Subject(s)
Amino Acids , Genes, cdc , Animals , Female , Alleles , Cloning, Molecular , Phylogeny , Sheep/genetics
7.
Heliyon ; 10(1): e23674, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38187309

ABSTRACT

Cardiovascular disease is the leading cause of death worldwide, whilst vitamin D levels have been found to be associated with cardiovascular disease. To investigate the causal relationship between vitamin D levels and five cardiovascular diseases, a genome-wide association study (GWAS) was carried out using data on vitamin D levels (sample size = 79366), angina pectoris (18168 cases and 187840 controls), coronary heart disease (21012 cases and 197780 controls), lacunar stroke (6030 cases and 248929 controls), heart attack (10693 cases and 451187 controls), and hypertension (55917 cases and 162837 controls), with a Mendelian randomization (MR) analysis being subsequently performed. Six single nucleotide polymorphisms were used as instrumental variables (IVs). In addition, sensitivity analysis was performed to verify the reliability of the MR results here. The results showed a causal relationship between vitamin D levels and angina pectoris (OR = 0.51, 95 % CI: 0.28-0.93, P = 0.03), coronary heart disease (OR = 0.53, 95 % CI: 0.34-0.81, P = 0.004), and lacunar stroke (OR = 0.41, 95 % CI: 0.20-0.86, P = 0.02), but no causal relationship with heart attacks (OR = 1.00, 95 % CI: 0.99-1.01, P = 0.76) or hypertension (OR = 0.99, 95 % CI: 0.73-1.34, P = 0.94). Additionally, our IVs data showed no heterogeneity or pleiotropy, whilst the results of the MR analysis were reliable. This study contributes to the prevention and treatment of these five cardiovascular diseases.

8.
Nano Lett ; 24(5): 1510-1521, 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38285667

ABSTRACT

α-PD-L1 therapy has shown encouraging results at harnessing the immune system to combat cancer. However, the treatment effect is relatively low due to the dense extracellular matrix (ECM) and tumor immunosuppressive microenvironment (TIME). Therefore, an ultrasound (US)-responsive nanosensitizer (URNS) is engineered to deliver losartan (LST) and polyethylenimine (PEI) to remolde the TME, driving "cold"-"hot" tumor transformation and enhancing the sensitivity of α-PD-L1 therapy. In the tumor site, noninvasive US can make MTNP generate ROS, which cleave ROS-sensitive bonds to dissociate MTNPtK@LST-PEI, shedding PEI and releasing LST from mesoporous spheres. The results demonstrated that URNS combined with α-PD-L1 therapy effectively inhibited tumor growth with an inhibition rate as high as 90%, which was 1.7-fold higher than that of the α-PD-L1 treatment in vivo. In summary, the URNS improves the sensitivity of α-PD-L1 therapy by remodeling the TME, which provides promising insights for optimizing cancer immunotherapy.


Subject(s)
B7-H1 Antigen , Neoplasms , Humans , Reactive Oxygen Species , Extracellular Matrix , Immunosuppressive Agents , Immunotherapy , Losartan , Polyethyleneimine , Tumor Microenvironment
9.
DNA Cell Biol ; 42(11): 689-696, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37843913

ABSTRACT

Genomic imprinting refers to the expression of parent-specific genes in diploid mammalian cells. MAGEL2 gene is a maternally imprinted gene that has been identified in mice and humans and is associated with the onset of puberty. The purpose of this study was to investigate its imprinting status and its relationship with the onset of puberty in Dolang sheep. The sequence of 3734 bp cDNA of MAGEL2 in Dolang sheep was obtained by cloning and sequencing, encoding 1173 amino acids. The results of the nucleotide and amino acid similarity analysis showed that it was highly conserved among different mammalian species. The MAGEL2 gene was expressed monoallelically in the tissues of adult and neonatal umbilical cords, and the expressed allele was paternally inherited. Real Time quantitative PCR (RT-qPCR) results showed that the MAGEL2 gene was highly expressed in the hypothalamus and pituitary gland, increased significantly from prepuberty to puberty, and decreased significantly after puberty. This study suggests that MAGEL2 is a paternally expressed and maternally imprinted gene in Dolang sheep, which may be involved in the initiation of puberty in Dolang sheep. This study provides a theoretical basis for further research on the mechanism of the imprinted gene MAGEL2 regulating the onset of puberty in sheep, and provides a new idea for the future research on the mechanism of onset of puberty in sheep.


Subject(s)
Genomic Imprinting , Puberty , Mice , Humans , Animals , Sheep/genetics , Genomic Imprinting/genetics , Puberty/genetics , Mammals/metabolism , Proteins/metabolism
10.
Cell Stem Cell ; 30(9): 1235-1245.e6, 2023 09 07.
Article in English | MEDLINE | ID: mdl-37683604

ABSTRACT

Heterologous organ transplantation is an effective way of replacing organ function but is limited by severe organ shortage. Although generating human organs in other large mammals through embryo complementation would be a groundbreaking solution, it faces many challenges, especially the poor integration of human cells into the recipient tissues. To produce human cells with superior intra-niche competitiveness, we combined optimized pluripotent stem cell culture conditions with the inducible overexpression of two pro-survival genes (MYCN and BCL2). The resulting cells had substantially enhanced viability in the xeno-environment of interspecies chimeric blastocyst and successfully formed organized human-pig chimeric middle-stage kidney (mesonephros) structures up to embryonic day 28 inside nephric-defective pig embryos lacking SIX1 and SALL1. Our findings demonstrate proof of principle of the possibility of generating a humanized primordial organ in organogenesis-disabled pigs, opening an exciting avenue for regenerative medicine and an artificial window for studying human kidney development.


Subject(s)
Induced Pluripotent Stem Cells , Pluripotent Stem Cells , Humans , Swine , Animals , Mesonephros , Embryo, Mammalian , Blastocyst , Mammals , Homeodomain Proteins
11.
Arch Anim Breed ; 66(3): 217-224, 2023.
Article in English | MEDLINE | ID: mdl-37560354

ABSTRACT

Although ovine puberty initiation has been previously studied, the mechanism by which the RNA-binding protein Lin28B affects this process has not been investigated. The present study aimed to investigate the effects of Lin28B overexpression on let-7b, let-7g, cell proliferation, and estrogen secretion in Dolang sheep ovine ovarian granulosa cells. In this study, a Lin28B vector was constructed and transfected into ovarian granulosa cells using liposomes. After 24, 48, and 72 h of overexpression, quantitative real-time PCR (qRT-PCR) was used for measuring let-7b and let-7g microRNA (miRNA) levels, and estrogen secretion was measured using the enzyme-linked immunosorbent assay (ELISA). A CCK-8 (Cell Counting Kit-8) kit was used for evaluating cell viability and proliferation in response to Lin28B overexpression at 24 h. The results showed that the expression of let-7b and let-7g decreased significantly after Lin28B overexpression, and the difference was consistent over different periods. The result of ELISA showed that estradiol (E2) levels significantly increased following Lin28B overexpression. Additionally, Lin28B overexpression significantly increased the cell viability and proliferation. Therefore, the Lin28B-let-7 family axis may play a key role in the initiation of female ovine puberty.

12.
Genes (Basel) ; 14(5)2023 05 07.
Article in English | MEDLINE | ID: mdl-37239408

ABSTRACT

The Lin28B gene is involved in the initiation of puberty, but its regulatory mechanisms remain unclear. Therefore, in this study, we aimed to study the regulatory mechanism of the Lin28B promoter by cloning the Lin28B proximal promoter for bioinformatic analysis. Next, a series of deletion vectors were constructed based on the bioinformatic analysis results for dual-fluorescein activity detection. The transcriptional regulation mechanism of the Lin28B promoter region was analyzed by detecting mutations in transcription factor-binding sites and overexpression of transcription factors. The dual-luciferase assay showed that the Lin28B promoter region -837 to -338 bp had the highest transcriptional activity, and the transcriptional activity of the Lin28B transcriptional regulatory region decreased significantly after Egr1 and SP1 mutations. Overexpression of the Egr1 transcription factor significantly enhanced the transcription of Lin28B, and the results indicated that Egr1 and SP1 play important roles in regulating Lin28B. These results provide a theoretical basis for further research on the transcriptional regulation of sheep Lin28B during puberty initiation.


Subject(s)
Gene Expression Regulation , Transcription Factors , Animals , Sheep/genetics , Transcription Factors/genetics , Transcription Factors/metabolism , Binding Sites , Promoter Regions, Genetic , Gene Expression Regulation/genetics , Protein Binding
13.
Small ; 19(25): e2300060, 2023 06.
Article in English | MEDLINE | ID: mdl-36929045

ABSTRACT

Nanoscale drug carriers play a crucial role in reducing side effects of chemotherapy drugs. However, the mononuclear phagocyte system (MPS) and the drug protonation after nanoparticles (NPs) burst release still limit the drug delivery efficiency. In this work, a self-disguised Nanospy is designed to overcome this problem. The Nanospy is composed of: i) poly (lactic-co-glycolic acid)-polyethylene glycol (PLGA-PEG) loading doxorubicin is the core structure of the Nanospy. ii) CD47 mimic peptides (CD47p) is linked to NPs which conveyed the "don't eat me" signal. iii) 4-(2-aminoethyl) benzenesulfonamide (AEBS) as the inhibitor of Carbonic anhydrase IX (CAIX) linked to NPs. Briefly, when the Nanospy circulates in the bloodstream, CD47p binds to the regulatory protein α (SIRPα) on the surface of macrophages, which causes the Nanospy escapes from phagocytosis. Subsequently, the Nanospy enriches in tumor and the AEBS reverses the acidic microenvironment of tumor. Due to above characteristics, the Nanospy reduces liver macrophage phagocytosis by 25% and increases tumor in situ DOX concentration by 56% compared to PLGA@DOX treatment. In addition, the Nanospy effectively inhibits tumor growth with a 63% volume reduction. This work presents a unique design to evade the capture of MPS and overcomes the influence of acidic tumor microenvironment (TME) on weakly alkaline drugs.


Subject(s)
Nanoparticles , Neoplasms , Humans , Drug Delivery Systems , Drug Carriers/chemistry , Doxorubicin/chemistry , Neoplasms/drug therapy , Nanoparticles/chemistry , Peptides/therapeutic use , Drug Liberation , Polyethylene Glycols/chemistry , Tumor Microenvironment
14.
Environ Sci Technol ; 57(15): 6196-6204, 2023 04 18.
Article in English | MEDLINE | ID: mdl-36997849

ABSTRACT

Sustaining a metabolically active electroactive biofilm (EAB) is essential for the high efficiency and durable operation of microbial fuel cells (MFCs). However, EABs usually decay during long-term operation, and, until now, the causes remain unknown. Here, we report that lysogenic phages can cause EAB decay in Geobacter sulfurreducens fuel cells. A cross-streak agar assay and bioinformatic analysis revealed the presence of prophages on the G. sulfurreducens genome, and a mitomycin C induction assay revealed the lysogenic to lytic transition of those prophages, resulting in a progressive decay in both current generation and the EAB. Furthermore, the addition of phages purified from decayed EAB resulted in accelerated decay of the EAB, thereafter contributing to a faster decline in current generation; otherwise, deleting prophage-related genes rescued the decay process. Our study provides the first evidence of an interaction between phages and electroactive bacteria and suggests that attack by phages is a primary cause of EAB decay, having significant implications in bioelectrochemical systems.


Subject(s)
Bioelectric Energy Sources , Biofilms , Geobacter , Bioelectric Energy Sources/microbiology , Electrodes , Virus Activation
15.
DNA Cell Biol ; 42(3): 130-139, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36809059

ABSTRACT

Lin28B plays an important role in puberty initiation in sheep. This study aimed to discuss the correlation between different growth periods and the methylation status of cytosine-guanine dinucleotide (CpG) islands in the promoter region of the Lin28B gene in the Dolang sheep's hypothalamus. In this study, the sequence of the Lin28B gene promoter region in Dolang sheep was obtained by cloning and sequencing, and methyl groups of the CpG island of the Lin28B gene promoter in the hypothalamus were detected by bisulfite sequencing PCR during the three periods of prepuberty, adolescence, and postpuberty in Dolang sheep. Lin28B expression in the Dolang sheep's hypothalamus was detected by fluorescence quantitative PCR at three stages: prepuberty, puberty, and postpuberty. In this experiment, the 2993-bp Lin28B promoter region was obtained, and it was predicted that there was a CpG island containing 15 transcription factor binding sites and 12 CpG sites, which may play a role in gene expression regulation. Overall, methylation levels increased from prepuberty to postpuberty, while Lin28B expression levels decreased, indicating that Lin28B expression was negatively correlated with promoter methylation levels. Variance analysis showed significant differences in the methylation status of CpG5, CpG7, and CpG9 between pre- and postpuberty (p < 0.05). Our data show that Lin28B expression is increased by demethylation of promoter CpG islands, with CpG5, CpG7, and CpG9 implicated as critical regulatory sites.


Subject(s)
DNA Methylation , Hypothalamus , Animals , Sheep/genetics , CpG Islands/genetics , Promoter Regions, Genetic , Hypothalamus/metabolism , RNA, Messenger/metabolism
16.
Exp Cell Res ; 422(1): 113427, 2023 01 01.
Article in English | MEDLINE | ID: mdl-36400183

ABSTRACT

Protein kinase C epsilon (PKCε) belongs to a family of serine/threonine kinases that control cell proliferation, differentiation and survival. Aberrant PKCε activation and overexpression is a frequent feature of numerous cancers. However, its role in regulation of lipid metabolism in cancer cells remains elusive. Here we report a novel function of PKCε in regulating of prostate cancer cell proliferation by modulation of PKM2-mediated de novo lipogenesis. We show that PKCε promotes de novo lipogenesis and tumor cell proliferation via upregulation of lipogenic enzymes and lipid contents in prostate cancer cells. Mechanistically, PKCε interacts with NABD (1-388) domain of C-terminal deletion on pyruvate kinase isoform M2 (PKM2) and enhances the Tyr105 phosphorylation of PKM2, leading to its nuclear localization. Moreover, forced expression of mutant Tyr105 (Y105F) or PKM2 inhibition suppressed de novo lipogenesis and cell proliferation induced by overexpression of PKCε in prostate cancer cells. In a murine tumor model, inhibitor of PKM2 antagonizes lipogenic enzymes expression and prostate cancer growth induced by overexpression of PKCε in vivo. These data indicate that PKCε is a critical regulator of de novo lipogenesis, which may represent a potential therapeutic target for the treatment of prostate cancer.


Subject(s)
Prostatic Neoplasms , Protein Kinase C-epsilon , Animals , Humans , Male , Mice , Cell Line, Tumor , Lipogenesis/genetics , Phosphorylation/physiology , Prostatic Neoplasms/metabolism , Protein Isoforms/metabolism , Protein Kinase C-epsilon/genetics , Protein Kinase C-epsilon/metabolism , Pyruvate Kinase/genetics , Pyruvate Kinase/metabolism
17.
Animals (Basel) ; 12(19)2022 Sep 21.
Article in English | MEDLINE | ID: mdl-36230262

ABSTRACT

Fecundity is an important economic trait in sheep that directly affects their economic and productive efficiency. Our study aimed to identify SNP loci associated with sheep puberty or litter size which could be used in future breeding programs to improve fertility. Genomic DNA was obtained from Hetian and Cele Black sheep breeds and used for reduced-representation genome sequencing to identify SNP loci associated with pubertal initiation and litter size. Selective signatures analysis was performed based on the fixation index and nucleotide diversity, followed by pathway analysis of the genes contained in the selected regions. The selected SNP loci in the genes associated with pubertal initiation and litter size were validated using both sheep breeds. In total, 384,718 high quality SNPs were obtained and 376 genes were selected. Functional annotation of genes and enrichment analysis identified 12 genes associated with pubertal initiation and 11 genes associated with litter size. SNP locus validation showed that two SNP on PAK1 and four on ADCY1 may be associated with pubertal initiation, and one SNP on GNAQ gene (NC_040253.1: g.62677376G > A) was associated with litter size in Cele Black sheep. Our results provide new theoretical support for sheep breeding.

18.
Cell Prolif ; 55(5): e13244, 2022 May.
Article in English | MEDLINE | ID: mdl-35504619

ABSTRACT

OBJECTIVES: During embryonic haematopoiesis, haematopoietic stem/progenitor cells (HSPCs) develop from hemogenic endothelial cells (HECs) though endothelial to haematopoietic transition (EHT). However, little is known about how EHT is regulated in human. Here, we report that GFI1 plays an essential role in enabling normal EHT during haematopoietic differentiation of human embryonic stem cells (hESCs). RESULTS: GFI1 deletion in hESCs leads to a complete EHT defect due to a closed chromatin state of hematopoietic genes in HECs. Mechanically, directly regulates important signaling pathways essential for the EHT such as PI3K signaling.etc. CONCLUTIONS: Together, our findings reveal an essential role of GFI1 mediated epigenetic mechanism underlying human EHT during hematopoiesis.


Subject(s)
Chromatin , Hemangioblasts , Cell Differentiation/physiology , Chromatin/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Hemangioblasts/metabolism , Hematopoiesis/physiology , Humans , Phosphatidylinositol 3-Kinases/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism
19.
Biochim Biophys Acta Mol Cell Res ; 1869(9): 119296, 2022 09.
Article in English | MEDLINE | ID: mdl-35595103

ABSTRACT

Disseminated prostate cancer (PCa) is known to have a strong propensity for bone marrow. These disseminated tumor cells (DTCs) can survive in bone marrow for years without obvious proliferation, while maintaining the ability to develop into metastatic lesions. However, how DTCs kept dormant and recur is still uncertain. Here, we focus on the role of osteoblastic protein kinase D1 (PKD1) in PCa (PC-3 and DU145) dormancy using co-culture experiments. Using flow cytometry, western blotting, and immunofluorescence, we observed that in co-cultures osteoblasts could induce a dormant state in PCa cells, which is manifested by a fewer cell divisions, a decrease Ki-67-positive populations and a lower ERK/p38 ratio. In contrast, silencing of PKD1 gene in osteoblasts impedes co-cultured prostate cancer cell's dormancy ability. Mechanismly, protein kinase D1 (PKD1) in osteoblasts induces PCa dormancy via activating CREB1, which promoting the expression and secretion of growth arrest specific 6 (GAS6). Furthermore, GAS6-induced dormancy signaling significantly increased the expression of core circadian clock molecules in PCa cells, and a negative correlation of circadian clock proteins (BMAL1, CLOCK and DEC2) with recurrence-free survival is observed in metastatic prostate cancer patients. Interestingly, the expression of cell cycle factors (p21, p27, CDK1 and PCNA) which regulated by circadian clock also upregulated in response to GAS6 stimulation. Taken together, we provide evidence that osteoblastic PKD1/CREB1/GAS6 signaling regulates cellular dormancy of PCa cells, and highlights the importance of circadian clock in PCa cells dormancy.


Subject(s)
Circadian Clocks , Prostatic Neoplasms , TRPP Cation Channels/metabolism , Cell Line, Tumor , Humans , Intercellular Signaling Peptides and Proteins/metabolism , Male , Prostate/metabolism , Prostatic Neoplasms/metabolism , Protein Kinases/metabolism
20.
Stem Cell Reports ; 17(5): 1059-1069, 2022 05 10.
Article in English | MEDLINE | ID: mdl-35427483

ABSTRACT

Obtaining functional human cells through interspecies chimerism with human pluripotent stem cells (hPSCs) remains unsuccessful due to its extremely low efficiency. Here, we show that hPSCs failed to differentiate and contribute teratoma in the presence of mouse PSCs (mPSCs), while MYCN, a pro-growth factor, dramatically promotes hPSC contributions in teratoma co-formation by hPSCs/mPSCs. MYCN combined with BCL2 (M/B) greatly enhanced conventional hPSCs to integrate into pre-implantation embryos of different species, such as mice, rabbits, and pigs, and substantially contributed to mouse post-implantation chimera in embryonic and extra-embryonic tissues. Strikingly, M/B-hPSCs injected into pre-implantation Flk-1+/- mouse embryos show further enhanced chimerism that allows for obtaining live human CD34+ blood progenitor cells from chimeras through cell sorting. The chimera-derived human CD34+ cells further gave rise to various subtype blood cells in a typical colony-forming unit (CFU) assay. Thus, we provide proof of concept to obtain functional human cells through enhanced interspecies chimerism with hPSCs.


Subject(s)
Pluripotent Stem Cells , Teratoma , Animals , Cell Differentiation , Chimera , Chimerism , Humans , Mice , N-Myc Proto-Oncogene Protein , Rabbits , Swine
SELECTION OF CITATIONS
SEARCH DETAIL
...