Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Food Funct ; 13(16): 8627-8642, 2022 Aug 15.
Article in English | MEDLINE | ID: mdl-35894650

ABSTRACT

Sea cucumber tendon, one of the main parts of sea cucumber viscera, is widely accepted as a waste residue. In this study, a sea cucumber tendon polysaccharide (SCTPII) was purified from sea cucumber tendons and its primary structures and immunomodulatory activity were investigated. SCTPII is a triple-helix conformation homogeneous polysaccharide with a molecular weight of 3.97 × 106 Da that consists of glucose and fucose with molar ratios of 92.09% and 7.91% with high thermostability. In vivo tests on immunosuppressed Balb/c mice revealed that compared with the model group, the proliferation of T cells and B cells in splenic lymphocytes of mice in the high-dose group was significantly improved by 0.92 times and 5.14 times, respectively. Additionally, SCTPII could improve the proliferation ability and phagocytosis of macrophages, as well as promoting the expression of IL-6, TNF-α and IFN-γ and enhancing the intestinal physical barrier function by increasing the protein expression of claudin-1, occludin, ZO-1 and MUC2. Furthermore, the 16S rRNA sequencing of fecal samples was performed, and gene count and α-diversity analysis revealed that SCTPs could improve the microbial community richness. In particular, SCTPs could increase the relative abundance of Lactobacillus, Bacteroides and Akkermansia and reduce the relative abundance of Lachnospiraceae_NK4A136_group and Rikenellaceae_RC9_gut_group. These results demonstrate that SCPII possesses potential immunoregulatory activities in cyclophosphamide-induced mice by regulating intestinal microbiota diversity and improving immune organs, enhancing the proliferation ability of macrophages and splenocyte proliferation, and enhancing intestinal physical barrier function, which might provide important evidence for the development and utilization of the viscera of sea cucumber.


Subject(s)
Sea Cucumbers , Animals , Cyclophosphamide/pharmacology , Mice , Mice, Inbred BALB C , Polysaccharides/chemistry , Polysaccharides/pharmacology , RNA, Ribosomal, 16S/genetics , Tendons
2.
Bioresour Bioprocess ; 9(1): 77, 2022 Jul 25.
Article in English | MEDLINE | ID: mdl-38647576

ABSTRACT

The present study aimed to investigate the functional properties of soybean protein isolate (SPI) treated with alkaline protease and high-speed shearing homogenization. Alkaline protease-hydrolyzed SPIs that were characterized by varying degrees of hydrolysis between 0 and 6% were treated with high-speed shearing homogenization to obtain different micro-particulate proteins. The results showed that this combined treatment could significantly reduce the particle size of SPI by markedly degrading the structure of both the 7S and 11S subunits, thereby resulting in a significantly reduced content of ß-sheet and ß-turn structures. The surface hydrophobicity increased considerably for samples with hydrolysis below the threshold of 2% and then declined gradually above this threshold. Furthermore, the combination of hydrolysis and homogenization significantly improved the emulsion stability of SPI hydrolysates. It also significantly improved the foaming properties of SPI. These results demonstrated that alkaline protease hydrolysis combined with high-speed shearing homogenization represents a promising approach for improving the functional and structural properties of SPI.

3.
Food Funct ; 12(24): 12362-12371, 2021 Dec 13.
Article in English | MEDLINE | ID: mdl-34788772

ABSTRACT

Lung cancer is a common cancer with high mortality worldwide, and non-small cell lung cancer (NSCLC) accounts for the majority. The clinical treatment effect of NSCLC is not ideal. The aim of this study was to investigate the inhibitory effect of sea cucumber peptide (SCP) on NSCLC and its mechanism. The results showed that SCP could effectively inhibit the proliferation, migration and invasion of A549 cells. In addition, SCP can also inhibit the formation of pleural effusion and tumor growth in lung cancer mice, reduce liver and kidney injury, increase the levels of IL-2 and IL-12, decrease the levels of IL-6 and TNF-α, and prolong the survival time of mice. The microRNA sequencing and immunohistochemistry of mouse tumors showed that the tumor suppressor gene TUSC2 targeted by miR-378a-5p was involved in the inhibition of tumor growth by SCP. This study provides an experimental basis for the further development of SCP as an anti-tumor nutritional supplement, and provides a new idea for exploring the molecular mechanism of food derived active peptides in anti-tumor applications.


Subject(s)
Antineoplastic Agents/pharmacology , Carcinoma, Non-Small-Cell Lung/drug therapy , Lung Neoplasms/drug therapy , Peptides/pharmacology , Sea Cucumbers , A549 Cells/drug effects , Animals , Antineoplastic Agents/therapeutic use , Aquatic Organisms , Cell Line, Tumor/drug effects , Cell Proliferation/drug effects , Disease Models, Animal , Gene Expression Regulation, Neoplastic , Humans , Male , Mice, Inbred C57BL , MicroRNAs/genetics , Peptides/therapeutic use , Tumor Suppressor Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...