Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Food Chem ; 449: 139197, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38581788

ABSTRACT

Abalone (Haliotis spp.) is a shellfish known for its exceptional nutritional value and significant economic worth. This study investigated the dynamic characteristics of non-volatile compounds over a year, including metabolites, lipids, nucleotides, and free amino acids (FAAs), which determined the nutritional quality and flavor of abalone. 174 metabolites and 371 lipids were identified and characterized, while 20 FAAs and 11 nucleotides were quantitatively assessed. These non-volatile compounds of abalone were fluctuated with months variation, which was consistent with the fluctuations of environmental factors, especially seawater temperature. Compared with seasonal variation, gender had less influence on these non-volatiles. June and July proved to be the optimal harvesting periods for abalone, with the levels of overall metabolites, lipids, FAAs, and nucleotides in abalone exhibiting a higher value in June and July over a year. Intriguingly, taurine covered 60% of the total FAAs and abalone could be used as dietary taurine supplementation.


Subject(s)
Amino Acids , Gastropoda , Metabolomics , Seasons , Shellfish , Animals , Gastropoda/chemistry , Gastropoda/metabolism , Shellfish/analysis , Amino Acids/metabolism , Amino Acids/analysis , Amino Acids/chemistry , Lipids/chemistry , Nutritive Value , Male , Female
2.
Food Chem ; 447: 138949, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-38484544

ABSTRACT

Abalone, a highly sought-after aquatic product, possesses significant nutritional value. In this study, the relationship between aroma characteristics and lipid profile of abalone (Haliotis discus hannai) during seasonal fluctuation and thermal processing were profiled via volatolomics and lipidomics. 46 aroma compounds and 371 lipids were identified by HS-SPME-GC-MS and UPLC-Q-Extractive Orbitrap-MS, respectively. Multivariate statistical analysis indicated that carbonyls (aldehydes and ketones) and alcohols were the characteristic aroma compounds of abalone. The fluctuations in the aroma compound and lipid composition of abalone were consistent with the seasonal variation, especially seawater temperature. In addition, based on the correlation analysis, it was found that carbonyls (aldehydes and ketones) and alcohols had a positive correlation with phospholipids (lysophosphatidylethanolamines and lysophosphatidylcholines), while a negative correlation was observed with fatty acyls. These findings suggested that the effect of seasonal variations on the aroma changes of abalone might achieved by modulating the lipids composition of abalone.


Subject(s)
Gastropoda , Odorants , Animals , Seasons , Phospholipids , Aldehydes , Ketones
SELECTION OF CITATIONS
SEARCH DETAIL
...