Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 186
Filter
1.
Traffic Inj Prev ; : 1-9, 2024 Jul 24.
Article in English | MEDLINE | ID: mdl-39046244

ABSTRACT

OBJECTIVES: Aggressive driving behavior can lead to potential traffic collision risks, and abnormal weather conditions can exacerbate this behavior. This study aims to develop recognition models for aggressive driving under various climate conditions, addressing the challenge of collecting sufficient data in abnormal weather. METHODS: Driving data was collected in a virtual environment using a driving simulator under both normal and abnormal weather conditions. A model was trained on data from normal weather (source domain) and then transferred to foggy and rainy weather conditions (target domains) for retraining and fine-tuning. The K-means algorithm clustered driving behavior instances into three styles: aggressive, normal, and cautious. These clusters were used as labels for each instance in training a CNN model. The pre-trained CNN model was then transferred and fine-tuned for abnormal weather conditions. RESULTS: The transferred models showed improved recognition performance, achieving an accuracy score of 0.81 in both foggy and rainy weather conditions. This surpassed the non-transferred models' accuracy scores of 0.72 and 0.69, respectively. CONCLUSIONS: The study demonstrates the significant application value of transfer learning in recognizing aggressive driving behaviors with limited data. It also highlights the feasibility of using this approach to address the challenges of driving behavior recognition under abnormal weather conditions.

2.
J Immunother Cancer ; 12(7)2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39029924

ABSTRACT

BACKGROUND: Lenvatinib plus PD-1 inhibitors and interventional (LPI) therapy have demonstrated promising treatment effects in unresectable hepatocellular carcinoma (HCC). However, biomarkers for predicting the response to LPI therapy remain to be further explored. We aimed to develop a radiomics model to noninvasively predict the efficacy of LPI therapy. METHODS: Clinical data of patients with HCC receiving LPI therapy were collected in our institution. The clinical model was built with clinical information. Nine machine learning classifiers were tested and the multilayer perceptron classifier with optimal performance was used as the radiomics model. The clinical-radiomics model was constructed by integrating clinical and radiomics scores through logistic regression analysis. RESULTS: 151 patients were enrolled in this study (2:1 randomization, 101 and 50 in the training and validation cohorts), of which three achieved complete response, 69 showed partial response, 46 showed stable disease, and 33 showed progressive disease. The objective response rate, disease control rate, and conversion resection rates were 47.7, 78.1 and 23.2%. 14 features were selected from the initially extracted 1223 for radiomics model construction. The area under the curves of the radiomics model (0.900 for training and 0.893 for validation) were comparable to that of the clinical-radiomics model (0.912 for training and 0.892 for validation), and both were superior to the clinical model (0.669 for training and 0.585 for validation). Meanwhile, the radiomics model can categorize participants into high-risk and low-risk groups for progression-free survival (PFS) and overall survival (OS) in the training (HR 1.913, 95% CI 1.121 to 3.265, p=0.016 for PFS; HR 4.252, 95% CI 2.051 to 8.816, p=0.001 for OS) and validation sets (HR 2.347, 95% CI 1.095 to 5.031, p=0.012 for PFS; HR 2.592, 95% CI 1.050 to 6.394, p=0.019 for OS). CONCLUSION: The promising machine learning radiomics model was developed and validated to predict the efficacy of LPI therapy for patients with HCC and perform risk stratification, with comparable performance to clinical-radiomics model.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Machine Learning , Phenylurea Compounds , Quinolines , Humans , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/diagnostic imaging , Carcinoma, Hepatocellular/pathology , Liver Neoplasms/drug therapy , Liver Neoplasms/diagnostic imaging , Liver Neoplasms/pathology , Quinolines/therapeutic use , Phenylurea Compounds/therapeutic use , Male , Female , Middle Aged , Aged , Tomography, X-Ray Computed/methods , Immune Checkpoint Inhibitors/therapeutic use , Immune Checkpoint Inhibitors/pharmacology , Adult , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Radiomics
3.
Fungal Genet Biol ; 173: 103911, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38960372

ABSTRACT

Coprinopsis cinerea, a model fungus, is utilized for investigating the developmental mechanisms of basidiomycetes. The development of basidiomycetes is a highly organized process that requires coordination among genetic, environmental, and physiological factors. Oxylipins, a class of widely distributed signaling molecules, play crucial roles in fungal biology. Among oxylipins, the sexual pheromone-inducing factors (psi factors) have been identified as key regulators of the balance between asexual and sexual spore development in Ascomycetes. Linoleate dioxygenases are enzymes involved in the biosynthesis of psi factors, yet their specific physiological functions in basidiomycete development remain unclear. In this study, linoleate dioxygenases in basidiomycetes were identified and characterized. Phylogenetic analysis revealed that linoleate dioxygenases from Basidiomycota formed a distinct clade, with linoleate dioxygenases from Agaricomycetes segregating into three groups and those from Ustilaginomycetes forming a separate group. Both basidiomycete and ascomycete linoleate dioxygenases shared two characteristic domains: the N-terminal of linoleate dioxygenase domain and the C-terminal of cytochrome P450 domain. While the linoleate dioxygenase domains exhibited similarity between basidiomycetes and ascomycetes, the cytochrome P450 domains displayed high diversity in key sites. Furthermore, the gene encoding the linoleate dioxygenase Ccldo1 in C. cinerea was knocked out, resulting in a significant increase in fruiting body formation without affecting asexual conidia production. This observation suggests that secondary metabolites synthesized by CcLdo1 negatively regulate the sexual reproduction process in C. cinerea while not influencing the asexual reproductive process. This study represents the first identification of a gene involved in secondary metabolite synthesis that regulates basidiocarp development in a basidiomycete.

5.
Article in Chinese | MEDLINE | ID: mdl-38973035

ABSTRACT

Objective:To investigate the clinical features, imaging findings, surgical methods, diagnostic and treatment experience of spontaneous cerebrospinal fluid otorrhoea. Methods:The clinical data of 11 patients with spontaneous cerebrospinal fluid otorrhoea treated surgically at our hospital from May 2018 to May 2023 were retrospectively analyzed. The medical data included medical history, imaging data, leak location, surgical repair method, treatment effect and postoperative follow-up. Results:Among the 11 surgical patients, 4 patients were initially diagnosed with secretory otitis media, 1 was initially diagnosed with purulent otitis media, and 5 patients had a history of meningitis or presented because meningitis as the initial diagnosis. There were 2 cases of cerebrospinal fluid leakage repaired through the ear canal pathway and 9 cases of cerebrospinal fluid leakage repaired through the mastoid pathway. During the operation, leaks were located in the stapes floor plate in 4 cases, sinus meningeal angle in 1 case, posterior cranial fossa combined with middle cranial fossa in 1 case, middle cranial fossa in 4 cases, and labyrinthine segment of the internal auditory canal and facial nerve canal in 1 case. Ten patient was successfully repaired, and another patient developed intracranial hypertension after surgery, with symptoms alleviated by a lateral ventriculoperitoneal shunt. Postoperative follow-up ranged from 6 months to 4 years, and there was no CSF otorrhoea and meningitis recurrence. Conclusion:The incidence of spontaneous cerebrospinal fluid otorrhea is low, the clinical symptoms are atypical, and the rate of delayed diagnosis or missed diagnosis and misdiagnosis is high. Surgery is currently the preferred treatment for spontaneous cerebrospinal fluid otorrhoea, and satisfactory results are usually achieved; During diagnosis and treatment, it is crucial to be vigilant for intracranial hypertension to prevent serious complications and irreversible damage.


Subject(s)
Cerebrospinal Fluid Otorrhea , Humans , Cerebrospinal Fluid Otorrhea/diagnosis , Cerebrospinal Fluid Otorrhea/surgery , Retrospective Studies , Male , Female , Adult , Middle Aged , Meningitis/diagnosis
6.
Light Sci Appl ; 13(1): 153, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38965220

ABSTRACT

Photodetection has attracted significant attention for information transmission. While the implementation relies primarily on the photonic detectors, they are predominantly constrained by the intrinsic bandgap of active materials. On the other hand, photothermoelectric (PTE) detectors have garnered substantial research interest for their promising capabilities in broadband detection, owing to the self-driven photovoltages induced by the temperature differences. To get higher performances, it is crucial to localize light and heat energies for efficient conversion. However, there is limited research on the energy conversion in PTE detectors at micro/nano scale. In this study, we have achieved a two-order-of-magnitude enhancement in photovoltage responsivity in the self-rolled tubular tellurium (Te) photodetector with PTE effect. Under illumination, the tubular device demonstrates a maximum photovoltage responsivity of 252.13 V W-1 and a large detectivity of 1.48 × 1011 Jones. We disclose the mechanism of the PTE conversion in the tubular structure with the assistance of theoretical simulation. In addition, the device exhibits excellent performances in wide-angle and polarization-dependent detection. This work presents an approach to remarkably improve the performance of photodetector by concentrating light and corresponding heat generated, and the proposed self-rolled devices thus hold remarkable promises for next-generation on-chip photodetection.

7.
Opt Express ; 32(11): 18858-18870, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38859033

ABSTRACT

A universally applicable approach is proposed for the fabrication of fiber-optic polymer sensors. The hollow-core fibers (HCFs) with inner diameters of 30 µm, 50 µm, and 75 µm are spliced coaxially with dual-hole fiber (DHF) or photonic crystal fiber (PCF). Owing to the sized-matched air holes within HCF and DHF/PCF, an interconnected in-fiber microchannel is constructed, which facilitates rapid and complete filling of the HCF's central hole with liquid glue. After the ultraviolet-induced polymerization, a polymer Fabry-Perot interferometer is achieved by cutting the HCF end with a desired cavity length. Besides, the interference visibility is significantly enhanced by adding a refractive-index-modulated polymer cap onto the cutting surface. Experimental results demonstrate the optimized interference spectra and the interconnection of the matched air-hole fibers. The polymer sensor exhibits a signal-to-noise ratio of 56.8 dB for detecting pulsed ultrasonic waves, which is more than twice that of a partially polymer-filled sensor. Due to the hermetically-sealed structure, the sensor probe presents constrained performance with a temperature sensitivity of 230.2 pm/°C and a humidity sensitivity of 93.7 pm/%RH, which can be further improved by releasing the polymer waveguide from fiber cladding. Based on interconnected holey fibers, the proposed approach has a uniform size-controlled polymer waveguide dimension with increased spectrum visibility, rendering it suitable for a diverse range of microstructure-matched optical fibers.

8.
Neurochem Res ; 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38916813

ABSTRACT

Dysfunction of Schwann cells, including cell apoptosis, autophagy inhibition, dedifferentiation, and pyroptosis, is a pivotal pathogenic factor in induced diabetic peripheral neuropathy (DPN). Histone deacetylases (HDACs) are an important family of proteins that epigenetically regulate gene transcription by affecting chromatin dynamics. Here, we explored the effect of HDAC1 on high glucose-cultured Schwann cells. HDAC1 expression was increased in diabetic mice and high glucose-cultured RSC96 cells, accompanied by cell apoptosis. High glucose also increased the mitochondrial pathway apoptosis-related Bax/Bcl-2 and cleaved caspase-9/caspase-9 ratios and decreased endoplasmic reticulum response-related GRP78, CHOP, and ATF4 expression in RSC96 cells (P < 0.05). Furthermore, overexpression of HDAC1 increased the ratios of Bax/Bcl-2, cleaved caspase-9/caspase-9, and cleaved caspase-3 and reduced the levels of GRP78, CHOP, and ATF4 in RSC96 cells (P < 0.05). In contrast, knockdown of HDAC1 inhibited high glucose-promoted mitochondrial pathway apoptosis and suppressed the endoplasmic reticulum response. Moreover, RNA sequencing revealed that U4 spliceosomal RNA was significantly reduced in HDAC1-overexpressing RSC96 cells. Silencing of U4 spliceosomal RNA led to an increase in Bax/Bcl-2 and cleaved caspase-9 and a decrease in CHOP and ATF4. Conversely, overexpression of U4 spliceosomal RNA blocked HDAC1-promoted mitochondrial pathway apoptosis and inhibited the endoplasmic reticulum response. In addition, alternative splicing analysis of HDAC1-overexpressing RSC96 cells showed that significantly differential intron retention (IR) of Rpl21, Cdc34, and Mtmr11 might be dominant downstream targets that mediate U4 deficiency-induced Schwann cell dysfunction. Taken together, these findings indicate that HDAC1 promotes mitochondrial pathway-mediated apoptosis and inhibits the endoplasmic reticulum stress response in high glucose-cultured Schwann cells by decreasing the U4 spliceosomal RNA/IR of Rpl21, Cdc34, and Mtmr11.

9.
Apoptosis ; 2024 Jun 02.
Article in English | MEDLINE | ID: mdl-38824477

ABSTRACT

The upregulation of programmed death ligand 1 (PD-L1) plays a crucial role in facilitating cancer cells to evade immune surveillance through immunosuppression. However, the precise regulatory mechanisms of PD-L1 in hepatocellular carcinoma (HCC) remain undefined. The correlation between PD-L1 and ubiquitin-like molecules (UBLs) was studied using sequencing data from 20 HCC patients in our center, combined with TCGA data. Specifically, the association between FAT10 and PD-L1 was further validated at both the protein and mRNA levels in HCC tissues from our center. Subsequently, the effect of FAT10 on tumor progression and immune suppression was examined through both in vivo and in vitro experiments. Utilizing sequencing data, qPCR, and Western blotting assays, we confirmed that FAT10 was highly expressed in HCC tissues and positively correlated with PD-L1 expression. Additionally, in vitro experiments demonstrated that the overexpression of FAT10 fostered the proliferation, migration, and invasion of HCC cells. Furthermore, the overexpression of FAT10 in HCC cells led to an increase in PD-L1 expression, resulting in the inhibition of T cell proliferation and the enhancement of HCC cell resistance to T cell-mediated cytotoxicity. Moreover, in vivo experiments utilizing the C57BL/6 mouse model revealed that overexpression of FAT10 effectively suppressed the infiltration of CD8 + GZMB + and CD8 + Ki67 + T cells, as well as reduced serum levels of TNF-α and IFN-γ. Mechanistically, we further identified that FAT10 upregulates PD-L1 expression via activating the PI3K/AKT/mTOR pathway, but not in a ubiquitin-like modification. In conclusion, our findings indicate that FAT10 promotes immune evasion of HCC via upregulating PD-L1 expression, suggesting its potential as a novel target to enhance the efficiency of immunotherapy in HCC.

10.
Accid Anal Prev ; 204: 107647, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38796999

ABSTRACT

Early warning of driving risks can effectively prevent collisions. However, numerous studies that predicted driving risks have suffered from the use of single data sources, insufficiently advanced models, and lack of time window analysis. To address these issues, this paper proposes a self-attention-based bidirectional long short-term memory (Att-Bi-LSTM) network model to predict driving risk based on multi-source data. First, driving simulation tests are conducted. Driver demographic, operation, visual, and physiological data as well as kinematic data are collected. Then, the driving risks are classified into no risk, low risk, medium risk, and high risk. Next, the Att-Bi-LSTM model is constructed, and convolutional neural network (CNN), CNN-LSTM, CatBoost, LightGBM, and XGBoost are employed for comparison. To generate the inputs and outputs of the models, observation, interval, and prediction time windows are introduced. The results show that the Att-Bi-LSTM model using early-fusion method significantly outperforms the five comparison models, with a macro-average F1-score of 0.914. The results of ablation studies indicate that the Bi-LSTM layers and self-attention layer have achieved the expected effect, which is crucial for improving the model's performance. As the interval or prediction time window is extended, the accuracy of the prediction results gradually decreases. However, as the observation time window is extended, the results first improve and then become stable. Compared to using only relative kinematic data, using all data (i.e., multi-source data) is shown to improve the F1-score by 0.061. This study provides an effective method for driving risk prediction and supports the improvement of advanced driver assistance systems.


Subject(s)
Automobile Driving , Neural Networks, Computer , Humans , Automobile Driving/psychology , Risk Assessment/methods , Adult , Male , Accidents, Traffic/prevention & control , Female , Computer Simulation , Memory, Short-Term , Attention , Young Adult
11.
Science ; 384(6697): 793-798, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38753778

ABSTRACT

Stereoselective construction of γ- and δ-stereocenters in carbonyl compounds is a pivotal objective in asymmetric synthesis. Here, we report chiral bifunctional oxazoline-pyridone ligands that enable enantioselective palladium-catalyzed remote γ-C-H (hetero)arylations of free cycloalkane carboxylic acids, which are essential carbocyclic building blocks in organic synthesis. The reaction establishes γ-tertiary and α-quaternary stereocenters simultaneously in up to >99% enantiomeric excess, providing access to a wide range of cyclic chiral synthons and bioactive molecules. The sequential enantioselective editing of two methylene C-H bonds can be achieved by using chiral ligands with opposite configuration to construct carbocycles containing three chiral centers. Enantioselective remote δ-C-H (hetero)arylation is also realized to establish δ-stereocenters that are particularly challenging to access using classical methodologies.

12.
Adv Sci (Weinh) ; : e2304551, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38810137

ABSTRACT

Mammalian cochlear hair cells (HCs) are essential for hearing, and damage to HCs results in severe hearing impairment. Damaged HCs can be regenerated by neighboring supporting cells (SCs), thus the functional regeneration of HCs is the main goal for the restoration of auditory function in vivo. Here, cochlear SC trans-differentiation into outer and inner HC by the induced expression of the key transcription factors Atoh1 and its co-regulators Gfi1, Pou4f3, and Six1 (GPAS), which are necessary for SCs that are destined for HC development and maturation via the AAV-ie targeting the inner ear stem cells are successfully achieved. Single-cell nuclear sequencing and lineaging tracing results showed that the majority of new Atoh1-derived HCs are in a state of initiating differentiation, while GP (Gfi1, Pou4f3) and GPS (Gfi1, Pou4f3, and Six1) enhanced the Atoh1-induced new HCs into inner and outer HCs. Moreover, the patch-clamp analysis indicated that newborn inner HCs induced by GPAS forced expression have similar electrophysiological characteristics to those of native inner HCs. Also, GPAS can induce HC regeneration in the HC-damaged mice model. In summary, the study demonstrates that AAV-mediated co-regulation of multiple genes, such as GPAS, is an effective means to achieve functional HC regeneration in the mouse cochlea.

13.
Nat Commun ; 15(1): 3066, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38594254

ABSTRACT

Releasing pre-strained two-dimensional nanomembranes to assemble on-chip three-dimensional devices is crucial for upcoming advanced electronic and optoelectronic applications. However, the release process is affected by many unclear factors, hindering the transition from laboratory to industrial applications. Here, we propose a quasistatic multilevel finite element modeling to assemble three-dimensional structures from two-dimensional nanomembranes and offer verification results by various bilayer nanomembranes. Take Si/Cr nanomembrane as an example, we confirm that the three-dimensional structural formation is governed by both the minimum energy state and the geometric constraints imposed by the edges of the sacrificial layer. Large-scale, high-yield fabrication of three-dimensional structures is achieved, and two distinct three-dimensional structures are assembled from the same precursor. Six types of three-dimensional Si/Cr photodetectors are then prepared to resolve the incident angle of light with a deep neural network model, opening up possibilities for the design and manufacturing methods of More-than-Moore-era devices.

14.
Adv Sci (Weinh) ; 11(18): e2400845, 2024 May.
Article in English | MEDLINE | ID: mdl-38520732

ABSTRACT

Complete remission of colorectal cancer (CRC) is still unachievable in the majority of patients by common fractionated radiotherapy, leaving risks of tumor metastasis and recurrence. Herein, clinical CRC samples demonstrated a difference in the phosphorylation of translation initiation factor eIF2α (p-eIF2α) and the activating transcription factor 4 (ATF4), whose increased expression by initial X-ray irradiation led to the resistance to subsequent radiotherapy. The underlying mechanism is studied in radio-resistant CT26 cells, revealing that the incomplete mitochondrial outer membrane permeabilization (iMOMP) triggered by X-ray irradiation is key for the elevated expression of p-eIF2α and ATF4, and therefore radio-resistance. This finding guided to discover that metformin and 2-DG are synergistic in reversing radio resistance by inhibiting p-eIF2α and ATF4. Liposomes loaded with metformin and 2-DG (M/D-Lipo) are thus prepared for enhancing fractionated radiotherapy of CRC, which achieved satisfactory therapeutic efficacy in both local and metastatic CRC tumors by reversing radio-resistance and preventing T lymphocyte exhaustion.


Subject(s)
Colorectal Neoplasms , Liposomes , Metformin , Mitochondria , Radiation Tolerance , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/radiotherapy , Colorectal Neoplasms/pathology , Mice , Animals , Humans , Mitochondria/metabolism , Mitochondria/drug effects , Mitochondria/radiation effects , Metformin/pharmacology , Metformin/therapeutic use , Radiation Tolerance/drug effects , Cell Line, Tumor , Disease Models, Animal , Activating Transcription Factor 4/metabolism , Activating Transcription Factor 4/genetics
15.
Adv Sci (Weinh) ; 11(23): e2310189, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38468446

ABSTRACT

Metal organic framework (MOF) films have attracted abundant attention due to their unique characters compared with MOF particles. But the high-temperature reaction and solvent corrosion limit the preparation of MOF films on fragile substrates, hindering further applications. Fabricating macro-sized continuous free-standing MOF films and transferring them onto fragile substrates are a promising alternative but still challenging. Here, a universal strategy to prepare transferrable macro-sized continuous free-standing MOF films with the assistance of oxide nanomembranes prepared by atomic layer deposition and studied the growth mechanism is developed. The oxide nanomembranes serve not only as reactant, but also as interfacial layer to maintain the integrality of the free-standing structure as the stacked MOF particles are supported by the oxide nanomembrane. The centimeter-scale free-standing MOF films can be transferred onto fragile substrates, and all in one device for glucose sensing is assembled. Due to the strong adsorption toward glucose molecules, the obtained devices exhibit outstanding performance in terms of high sensitivity, low limit of detection, and long durability. This work opens a new window toward the preparation of MOF films and MOF film-based biosensor chip for advantageous applications in post-Moore law period.


Subject(s)
Biosensing Techniques , Metal-Organic Frameworks , Metal-Organic Frameworks/chemistry , Biosensing Techniques/methods , Biosensing Techniques/instrumentation , Glucose , Equipment Design/methods
16.
Nutrients ; 16(5)2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38474883

ABSTRACT

Folate, also known as vitamin B9, facilitates the transfer of methyl groups among molecules, which is crucial for amino acid metabolism and nucleotide synthesis. Adequate maternal folate supplementation has been widely acknowledged for its pivotal role in promoting cell proliferation and preventing neural tube defects. However, in the post-fortification era, there has been a rising concern regarding an excess maternal intake of folic acid (FA), the synthetic form of folate. In this review, we focused on recent advancements in understanding the influence of excess maternal FA intake on offspring. For human studies, we summarized findings from clinical trials investigating the effects of periconceptional FA intake on neurodevelopment and molecular-level changes in offspring. For studies using mouse models, we compiled the impact of high maternal FA supplementation on gene expression and behavioral changes in offspring. In summary, excessive maternal folate intake could potentially have adverse effects on offspring. Overall, we highlighted concerns regarding elevated maternal folate status in the population, providing a comprehensive perspective on the potential adverse effects of excessive maternal FA supplementation on offspring.


Subject(s)
Drug-Related Side Effects and Adverse Reactions , Neural Tube Defects , Animals , Mice , Humans , Dietary Supplements/adverse effects , Folic Acid/therapeutic use , Neural Tube Defects/prevention & control , Family
17.
Cell Prolif ; : e13633, 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38528645

ABSTRACT

Hair cell (HC) damage is a leading cause of sensorineural hearing loss, and in mammals supporting cells (SCs) are unable to divide and regenerate HCs after birth spontaneously. Procollagen C-endopeptidase enhancer 2 (Pcolce2), which encodes a glycoprotein that acts as a functional procollagen C protease enhancer, was screened as a candidate regulator of SC plasticity in our previous study. In the current study, we used adeno-associated virus (AAV)-ie (a newly developed adeno-associated virus that targets SCs) to overexpress Pcolce2 in SCs. AAV-Pcolce2 facilitated SC re-entry into the cell cycle both in cultured cochlear organoids and in the postnatal cochlea. In the neomycin-damaged model, regenerated HCs were detected after overexpression of Pcolce2, and these were derived from SCs that had re-entered the cell cycle. These findings reveal that Pcolce2 may serve as a therapeutic target for the regeneration of HCs to treat hearing loss.

18.
Angew Chem Int Ed Engl ; 63(20): e202402657, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38477874

ABSTRACT

The main group metals are commonly perceived as catalytically inert in the context of oxygen reduction reactions (ORR) due to the delocalized valence orbitals. Regulating the local environment and structure of metal center coordinated by nitrogen ligands (M-Nx) is a promising approach to accelerate catalytic dynamics. Herein, we, for the first time, report the atomically dispersed Al catalysts coordinated with N and C atoms for 4-electron ORR. The axial coordinated pyrrolyl N group (No) is constructed in the Al-N4-No moiety to regulate the p-band structure of Al center, effectively steering the local environment and structure of the square planar Al-N4 sites, which typically exhibit too strong interaction with ORR intermediates. The dynamic covalency competition of axial Al-No and Al-O bonding could endow the Al center with moderate hybridization between Al 3p orbital and O 2p orbital, alleviating the binding energy of ORR intermediates. The as-prepared Al-N4-No electrocatalyst exhibits excellent ORR activity, selectivity, and durability, along with the rapid kinetics as demonstrated by in situ Raman spectroscopy. This work offers a fundamental comprehension of the fine regulation on p-band and guides the rational design of main-group metal-based single atom catalysts.

19.
Cell Death Dis ; 15(3): 191, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38443362

ABSTRACT

Circular RNAs (circRNAs) have been implicated in tumorigenesis and progression of various cancers. However, the underlying mechanisms of circRNAs in hepatocellular carcinoma (HCC) have not been fully elucidated. Herein, a new oncogenic circRNA, hsa_circ_0070039 (circNUP54), was identified to be significantly upregulated in HCC through circRNA sequencing. As verified in 68 HCC samples, circNUP54 overexpression was correlated with aggressive cancerous behaviors and poor outcomes. Moreover, the function experiments showed that knockdown of circNUP54 inhibited the malignant progression of HCC in vitro and in vivo, whereas overexpression of circNUP54 had the opposite role. Mechanistic investigations carried out by RNA pull-down, RNA immunoprecipitation, and immunofluorescence revealed that circNUP54 interacted with the RNA-binding protein Hu-antigen R (HuR) and promoted its cytoplasmic export. The cytoplasmic accumulation of HuR stabilized the downstream BIRC3 mRNA through its binding to the 3' UTR region. Consequently, the encoded protein of BIRC3, cellular inhibitor of apoptosis 2 (cIAP2), proceeded to activate the NF-κB signal pathway and ultimately contributed to HCC progression. In addition, depletion of BIRC3 rescued the pro-tumorigenic effect of circNUP54 on HCC cells. Overall, this study demonstrated that circNUP54 facilitates HCC progression via regulating the HuR/BIRC3/NF-κB axis, which may serve as a promising therapeutic target for HCC treatment.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Humans , 3' Untranslated Regions/genetics , Baculoviral IAP Repeat-Containing 3 Protein , Carcinogenesis , Carcinoma, Hepatocellular/genetics , Liver Neoplasms/genetics , NF-kappa B/genetics , RNA, Circular/genetics , RNA, Messenger/genetics
20.
Cell Prolif ; 57(7): e13620, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38400824

ABSTRACT

Irreversible damage to hair cells (HCs) in the cochlea leads to hearing loss. Cochlear supporting cells (SCs) in the murine cochlea have the potential to differentiate into HCs. Neuron membrane glycoprotein M6B (Gpm6b) as a four-transmembrane protein is a potential regulator of HC regeneration according to our previous research. In this study, we found that AAV-ie-mediated Gpm6b overexpression promoted SC-derived organoid expansion. Enhanced Gpm6b prevented the normal decrease in SC plasticity as the cochlea develops by supporting cells re-entry cell cycle and facilitating the SC-to-HC transformation. Also, overexpression of Gpm6b in the organ of Corti through the round window membrane injection facilitated the trans-differentiation of Lgr5+ SCs into HCs. In conclusion, our results suggest that Gpm6b overexpression promotes HC regeneration and highlights a promising target for hearing repair using the inner ear stem cells combined with AAV.


Subject(s)
Dependovirus , Hair Cells, Auditory , Animals , Dependovirus/genetics , Mice , Hair Cells, Auditory/metabolism , Hair Cells, Auditory/cytology , Cellular Reprogramming , Mice, Inbred C57BL , Cochlea/metabolism , Cochlea/cytology , Cell Transdifferentiation , Organoids/metabolism , Organoids/cytology
SELECTION OF CITATIONS
SEARCH DETAIL
...