Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Vet Res ; 20(1): 203, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38755641

ABSTRACT

BACKGROUND: Avian influenza virus (AIV) not only causes huge economic losses to the poultry industry, but also threatens human health. Reverse transcription recombinase-aided amplification (RT-RAA) is a novel isothermal nucleic acid amplification technology. This study aimed to improve the detection efficiency of H5, H7, and H9 subtypes of AIV and detect the disease in time. This study established RT-RAA-LFD and real-time fluorescence RT-RAA (RF-RT-RAA) detection methods, which combined RT-RAA with lateral flow dipstick (LFD) and exo probe respectively, while primers and probes were designed based on the reaction principle of RT-RAA. RESULTS: The results showed that RT-RAA-LFD could specifically amplify H5, H7, and H9 subtypes of AIV at 37 °C, 18 min, 39 °C, 20 min, and 38 °C, 18 min, respectively. The sensitivity of all three subtypes for RT-RAA-LFD was 102 copies/µL, which was 10 ∼100 times higher than that of reverse transcription polymerase chain reaction (RT-PCR) agarose electrophoresis method. RF-RT-RAA could specifically amplify H5, H7, and H9 subtypes of AIV at 40 °C, 20 min, 38 °C, 16 min, and 39 °C, 17 min, respectively. The sensitivity of all three subtypes for RF-RT-RAA was 101 copies/µL, which was consistent with the results of real-time fluorescence quantification RT-PCR, and 100 ∼1000 times higher than that of RT-PCR-agarose electrophoresis method. The total coincidence rate of the two methods and RT-PCR-agarose electrophoresis in the detection of clinical samples was higher than 95%. CONCLUSIONS: RT-RAA-LFD and RF-RT-RAA were successfully established in this experiment, with quick response, simple operation, strong specificity, high sensitivity, good repeatability, and stability. They are suitable for the early and rapid diagnosis of Avian influenza and they have positive significance for the prevention, control of the disease, and public health safety.


Subject(s)
Chickens , Influenza A virus , Influenza in Birds , Nucleic Acid Amplification Techniques , Recombinases , Reverse Transcription , Animals , Influenza in Birds/virology , Influenza in Birds/diagnosis , Nucleic Acid Amplification Techniques/veterinary , Nucleic Acid Amplification Techniques/methods , Influenza A virus/genetics , Influenza A virus/classification , Influenza A virus/isolation & purification , Recombinases/metabolism , Sensitivity and Specificity , Poultry Diseases/virology , Poultry Diseases/diagnosis
2.
Front Vet Sci ; 10: 1272612, 2023.
Article in English | MEDLINE | ID: mdl-38260192

ABSTRACT

To rapidly, specifically, and sensitively detect avian influenza virus (AIV), this research established a visual detection method of recombinase-aided amplification (RAA) based on Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) and CRISPR associated proteins 13a (Cas13a) system. In this study, specific primers and CRISPR RNA (crRNA) were designed according to the conservative sequence of AIV Nucleprotein (NP) gene. RAA technology was used to amplify the target sequence, and the amplification products were visually detected by lateral flow dipstick (LFD). The specificity, sensitivity, and reproducibility of RAA-CRISPR-Cas13a-LFD were evaluated. At the same time, this method and polymerase chain reaction (PCR)-agarose electrophoresis method were used to detect clinical samples, and the coincidence rate of the two detection methods was calculated. The results showed that the RAA-CRISPR-Cas13a-LFD method could achieve specific amplification of the target gene fragments, and the detection results could be visually observed through the LFD. Meanwhile, there was no cross-reaction with infectious bronchitis virus (IBV), infectious laryngotracheitis virus (ILTV), and Newcastle disease virus (NDV). The sensitivity reached 100 copies/µL, which was 1,000-fold higher than that of PCR-agarose electrophoresis method. The coincidence rate of clinical tests was 98.75 %, and the total reaction time was ~1 h. The RAA-CRISPR-Cas13a-LFD method established in this study had the advantages of rapid, simple, strong specificity, and high sensitivity, which provided a new visual method for AIV detection.

3.
Poult Sci ; 100(9): 101339, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34332226

ABSTRACT

Duck circovirus disease (DuCVD) caused by duck circovirus (DuCV) continues to spread in recent years, which brings serious harm to the poultry industry, so early diagnosis of DuCVD is of great significance for the prevention and control of this disease. Specific primers and probes for DuCV were designed in this study. Reverse primers and probes were modified at the 5' ends with biotin and fluorescein, respectively, and they were combined with dipsticks labeled with biotin antibodies and fluorescein antibodies to establish a recombinase-aided amplification-lateral flow dipstick (RAA-LFD) assay for detection of duck circovirus. By using this method, the reaction products reached detectable levels in about 20 min as a result of rapid amplification at a constant temperature of 37℃. The detection results could be observed by dripping the reaction products onto the dipstick within 2 to 3 min. The RAA-LFD method has good specificity and high sensitivity (102 copies/µL). Compared with conventional polymerase chain reaction (PCR), RAA-LFD has no power limit on the testing instrument, and is easy to use, saving more time and manpower, so it is more suitable for clinical detection.


Subject(s)
Circovirus , Nucleic Acid Amplification Techniques , Animals , Chickens , Circovirus/genetics , Nucleic Acid Amplification Techniques/veterinary , Sensitivity and Specificity
4.
Poult Sci ; 100(3): 100895, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33518305

ABSTRACT

The purpose of this study was to explore a specific, simple, and sensitive method for diagnosis of avian infectious laryngotracheitis virus. Recombinase-aided amplification (RAA) and lateral flow dipstick (LFD) were combined for labeling the optimized RAA probe with 6-carboxyfluorescein (FAM) and the 5'-end of the downstream primer with biotin, respectively. By optimizing the reaction time, temperature, and primer concentration of RAA, a RAA-LFD assay, which could be used for detection of infectious laryngotracheitis, was established. After the specificity and sensitivity test, the target gene fragments could be amplified by RAA-LFD assay in 20 min under isothermal conditions (37°C), and the amplification products could be visually observed and determined by LFD within 3 min. There was no cross-reaction with nucleic acids of other avian pathogens, the lowest detectable limit of RAA-LFD was 102 copies/µL, and the sensitivity of this method was 100 times higher than that of conventional PCR with the lowest detectable limit of 104 copies/µL. The results showed that RAA-LFD assay was highly sensitive, easy to use, and more suitable for clinical detection.


Subject(s)
Bird Diseases , Diagnostic Techniques and Procedures , Herpesviridae Infections , Herpesvirus 1, Gallid , Nucleic Acid Amplification Techniques , Animals , Bird Diseases/diagnosis , Bird Diseases/virology , Diagnostic Techniques and Procedures/standards , Diagnostic Techniques and Procedures/veterinary , Herpesviridae Infections/diagnosis , Herpesviridae Infections/veterinary , Herpesviridae Infections/virology , Herpesvirus 1, Gallid/genetics , Nucleic Acid Amplification Techniques/standards , Nucleic Acid Amplification Techniques/veterinary , Recombinases/metabolism , Sensitivity and Specificity
5.
Poult Sci ; 99(10): 4809-4813, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32988516

ABSTRACT

In this study, specific primers and fluorescent probes were designed to target the thymidine kinase (TK) gene sequence of avian infectious laryngotracheitis virus (ILTV). Through specificity and sensitivity tests, a real-time fluorescence-based recombinase-aided amplification (RF-RAA) method for detecting ILTV was established. The results showed that the method was specific and could be used to accurately detect ILTV, and there was no cross-reaction with Newcastle disease virus (NDV), avian influenza virus (AIV), or infectious bronchitis virus (IBV). Real-time fluorescence-based recombinase-aided amplification had high sensitivity, and the lowest detectable limit (LDL) for ILTV could reach 10 copies/µL, 1,000 times more sensitive than conventional PCR (104 copies/µL), to rival that of real-time fluorescence-based quantitative PCR (RFQ-PCR) (10 copies/µL). This method and RFQ-PCR were used to detect 96 samples of chicken throat swabs with ILT initially diagnosed in clinic from the north of China, and the coincidence rate of the 2 methods was 100%. The RF-RAA reaction required only 20-30 minutes to completing, and its sensitivity was much higher than that of conventional PCR. Real-time fluorescence-based recombinase-aided amplification is similar to RFQ-PCR and has the advantages of specificity, sensitivity, and high efficiency, so it is suitable for early clinical detection and epidemiological investigation of ILTV.


Subject(s)
Herpesviridae Infections , Herpesvirus 1, Gallid , Poultry Diseases , Animals , Chickens , China , Fluorescence , Herpesviridae Infections/diagnosis , Herpesviridae Infections/veterinary , Herpesviridae Infections/virology , Herpesvirus 1, Gallid/genetics , Limit of Detection , Nucleic Acid Amplification Techniques/veterinary , Poultry Diseases/diagnosis , Poultry Diseases/virology , Recombinases/metabolism , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...