Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Poult Sci ; 102(10): 102713, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37540950

ABSTRACT

The purpose of this study was to investigate the effects of melittin on production performance, antioxidant function, immune function, heat shock protein, intestinal morphology, and cecal microbiota of heat-stressed quails. A total of 120 (30-day-old) male quails were randomly divided into 3 groups. Each group consisted of 4 replicates with 10 birds per replicate. The ambient temperature of the control group (group W) was 24°C ± 2°C. The heat stress group (group WH) and the heat stress + melittin group (group WHA2) were subjected to heat stress for 4 h from 12:00 to 16:00 every day, and the temperature was 36°C ± 2°C for 10 d. The results showed that compared with the group W, heat stress significantly decreased growth performance, serum and liver antioxidative function, immune function, intestinal villus height (VH) and villus height-to-crypt depth ratio (VH/CD), and cecal microbiota Chao and ACE index (P < 0.05). The crypt depth (CD) in the small intestine, and HSP70 and HSP90 mRNA levels in the heart, liver, spleen, and kidney were significantly increased (P < 0.05). Dietary melittin significantly increased growth performance, serum and liver antioxidative function, immune function, intestinal VH and VH/CD, and cecal microbiota Shannon index in heat-stressed quails (P < 0.05). Melittin significantly decreased small intestinal CD, and HSP70 and HSP90 mRNA levels in the viscera (P < 0.05). Furthermore, dietary melittin could have balanced the disorder of cecal microbiota caused by heat stress and increased the abundance and diversity of beneficial microbiota (e.g., Firmicutes were significantly increased). PICRUSt2 functional prediction revealed that most of the KEGG pathways with differential abundance caused by high temperature were related to metabolism, and melittin could have restored them close to normal levels. Spearman correlation analysis showed that the beneficial intestinal bacteria Anaerotruncus, Bacteroidales_S24-7_group_norank, Lachnospiraceae_unclassified, Shuttleworthia, and Ruminococcaceae_UCG-014 increased by melittin were positively correlated with average daily feed intake, the average daily gain, serum and liver superoxide dismutase, IgG, IgA, bursa of Fabricius index, and ileum VH and VH/CD. In sum, our results demonstrate for the first time that dietary melittin could improve the adverse effects of heat stress on antioxidant function, immune function, heat shock protein, intestinal morphology, and cecal microbiota in quails, consequently improving their production performance under heat stress.


Subject(s)
Antioxidants , Microbiota , Male , Animals , Antioxidants/metabolism , Heat-Shock Proteins/metabolism , Melitten/metabolism , Quail/genetics , Chickens/genetics , Diet/veterinary , HSP70 Heat-Shock Proteins/genetics , HSP90 Heat-Shock Proteins/metabolism , Heat-Shock Response , RNA, Messenger/genetics , Immunity , Dietary Supplements/analysis , Animal Feed/analysis
2.
Poult Sci ; 100(4): 100996, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33667869

ABSTRACT

The cecal microbiota plays important roles in host food digestion and nutrient absorption, which may in part affect feed efficiency (FE). To investigate the composition and functional differences of cecal microbiota between high (n = 30) and low (n = 29) feed conversion ratio (FCR; metric for FE) groups, we performed 16S rRNA gene sequencing and predicted the metagenome function using Phylogenetic Investigation of Communities by Reconstruction of Unobserved Species in yellow broilers. The results showed that the 2 groups had the same prominent microbes but with differing abundance. Firmicutes, Bacteroidetes, and Actinobacteria were 3 prominent bacterial phyla in the cecal microbial community. Although there were no differences in microbial diversity, compositional differences related to FCR were found via linear discriminant analysis (LDA) effect size; the genus Bacteroides had a significantly higher abundance (LDA >2) in the high FE (HFE) group than in the low FE group. Furthermore, genus Bacteroides had a negative FCR-associated correlation (P < 0.05). Oscillospira was positively correlated with Bacteroides in both groups, whereas Dorea was negatively correlated with Bacteroides in the HFE group. Predictive functional analysis revealed that metabolic pathways such as "starch and sucrose metabolism," "phenylalanine, tyrosine and tryptophan biosynthesis," and "carbohydrate metabolism" were significantly enriched in the HFE group. The relatively subtle differences in FE-associated cecal microbiota composition suggest a possible link between cecal microbiota and FE. Moreover, Bacteroides may potentially be used as biomarkers for FE to improve growth performance in yellow broilers.


Subject(s)
Cecum , Gastrointestinal Microbiome , Animal Feed/analysis , Animals , Bacteria/classification , Bacteria/genetics , Biodiversity , Cecum/microbiology , Chickens , Phylogeny , RNA, Ribosomal, 16S/genetics
4.
J Exp Biol ; 216(Pt 10): 1786-92, 2013 May 15.
Article in English | MEDLINE | ID: mdl-23348946

ABSTRACT

Chimeras are useful models for studies of developmental biology and cell differentiation. Intraspecies and interspecies germline chimeras have been produced in previous studies, but the feasibility of producing chimeras between animals of two different classes remains unclear. To address this issue, we attempted to produce chimeras between the Chinese soft-shelled turtle and the Peking duck by transferring stage X blastoderm cells to recipient embryos. We then examined the survival and development of the PKH26-labeled donor cells in the heterologous embryos. At early embryonic stages, both turtle and duck donor cells that were labeled with PKH26 were readily observed in the brain, neural tube, heart and gonads of the respective recipient embryos. Movement of turtle donor-derived cells was observed in the duck host embryos after 48 h of incubation. Although none of the hatchlings presented a chimeric phenotype, duck donor-derived cells were detected in a variety of organs in the hatchling turtles, particularly in the gonads. Moreover, in the hatched turtles, mRNA expression of tissue-specific duck genes MEF2a and MEF2c was detected in many tissues, including the muscle, heart, small and large intestines, stomach and kidney. Similarly, SPAG6 mRNA was detected in a subset of turtle tissues, including the gonad and the small and large intestines. These results suggest that duck donor-derived cells can survive and differentiate in recipient turtles; however, no turtle-derived cells were detected in the hatched ducks. Our findings indicate that chimeras can be produced between animals of two different classes.


Subject(s)
Animal Shells/embryology , Blastoderm/cytology , Ducks/embryology , Embryo Transfer , Transplantation Chimera/embryology , Turtles/embryology , Animals , Blood Vessels/cytology , Cell Movement , China , Embryo, Nonmammalian/blood supply , Embryo, Nonmammalian/cytology , Fluorescence , Gene Expression Profiling , Gonads/cytology , Organ Specificity/genetics , Polymerase Chain Reaction , Trypsin/metabolism
5.
PLoS One ; 7(12): e50817, 2012.
Article in English | MEDLINE | ID: mdl-23251391

ABSTRACT

Several strategies have been used to generate transgenic birds. The most successful method so far has been the injection of lentiviral vectors into the subgerminal cavity of a newly laid egg. We report here a new, easy and effective way to produce transgenic quails through direct injection of a lentiviral vector, containing an enhanced-green fluorescent protein (eGFP) transgene, into the blood vessels of quail embryos at Hamburger-Hamilton stage 13-15 (HH13-15). A total of 80 embryos were injected and 48 G0 chimeras (60%) were hatched. Most injected embryo organs and tissues of hatched quails were positive for eGFP. In five out of 21 mature G0 male quails, the semen was eGFP-positive, as detected by polymerase chain reaction (PCR), indicating transgenic germ line chimeras. Testcross and genetic analyses revealed that the G0 quail produced transgenic G1 offspring; of 46 G1 hatchlings, 6 were transgenic (6/46, 13.0%). We also compared this new method with the conventional transgenesis using stage X subgerminal cavity injection. Total 240 quail embryos were injected by subgerminal cavity injection, of which 34 (14.1%) were hatched, significantly lower than the new method. From these hatched quails semen samples were collected from 19 sexually matured males and tested for the transgene by PCR. The transgene was present in three G0 male quails and only 4/236 G1 offspring (1.7%) were transgenic. In conclusion, we developed a novel bird transgenic method by injection of lentiviral vector into embryonic blood vessel at HH 13-15 stage, which result in significant higher transgenic efficiency than the conventional subgerminal cavity injection.


Subject(s)
Gene Transfer Techniques , Quail/genetics , Animals , Animals, Genetically Modified , Female , Genetic Vectors , Lentivirus/genetics , Male , Microinjections , Quail/embryology
6.
Anim Sci J ; 83(4): 291-8, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22515688

ABSTRACT

In the past, several strategies have been used to generate transgenic birds. The most successful method has proven to be injection of lentiviral vector into the subgerminal cavity of the newly laid egg. In this study, we directly injected lentiviral vector into the blood vessel of HH13-15 quail embryos to produce transgenic chimeras. In the manipulated, hatched birds, the green fluorescent protein (GFP) gene driven by a cytomegalovirus (CMV) promoter was extensively expressed. All tissues analyzed were GFP-positive, and gonad cells from some of the manipulated embryos expressed GFP. The semen genome of 21.4% of mature male birds was determined to be GFP-positive by PCR, indicating these male birds were transgenic chimeras.


Subject(s)
Animals, Genetically Modified , Chimera/genetics , Genetic Vectors , Lentivirus , Quail/genetics , Animals , Blotting, Southern , Blotting, Western , Green Fluorescent Proteins/analysis , Green Fluorescent Proteins/genetics , Immunohistochemistry , Male , Microinjections , Polymerase Chain Reaction , Quail/embryology
SELECTION OF CITATIONS
SEARCH DETAIL
...