Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 39
Filter
1.
Heliyon ; 10(17): e36631, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-39281628

ABSTRACT

Commodity futures are an important hedging tool in material trade, and by accurately predicting prices, countries and firms are able to make informed production and consumption decisions. This paper introduces a novel machine learning ensemble method that combines decomposition algorithms and physical optimization algorithms to predict commodity futures prices. First, the VMD(Variational mode decomposition) is optimized by the RIME algorithm (Rime optimization algorithm) to obtain the optimal modal decomposition results, and the trend and seasonal terms are predicted using the ELM (Extreme Learning Machines) and FA (Fourier Attention) models, respectively, and the results are finally synthesized. The results show that the MAPE(mean absolute percentage error) of one-step, three-step, and six-step methods for predicting crude oil prices are 0.48%, 0.66%, and 0.75%, respectively, and the MAPE of soybean prediction results are 0.22%, 0.27%, and 0.37%, respectively. The empirical results and ablation experiments show that it outperforms other benchmark models in terms of both horizontal and directional accuracy. Notably, it outperforms in predicting soybean futures prices, which demonstrates the ability of our model to better capture the characteristics of both the time and frequency domains of the series, to take sufficient consideration of the series characteristics, and to ensure robustness.

2.
Biol Direct ; 19(1): 71, 2024 Aug 22.
Article in English | MEDLINE | ID: mdl-39175011

ABSTRACT

BACKGROUND: Kidney renal clear cell carcinoma (KIRC) represents a significant proportion of renal cell carcinomas and is characterized by high aggressiveness and poor prognosis despite advancements in immunotherapy. Disulfidptosis, a novel cell death pathway, has emerged as a critical mechanism in various cellular processes, including cancer. This study leverages machine learning to identify disulfidptosis-related long noncoding RNAs (DRlncRNAs) as potential prognostic biomarkers in KIRC, offering new insights into tumor pathogenesis and treatment avenues. RESULTS: Our analysis of data from The Cancer Genome Atlas (TCGA) led to the identification of 431 DRlncRNAs correlated with disulfidptosis-related genes. Five key DRlncRNAs (SPINT1-AS1, AL161782.1, OVCH1-AS1, AC131009.3, and AC108673.3) were used to develop a prognostic model that effectively distinguished between low- and high-risk patients with significant differences in overall survival and progression-free survival. The low-risk group had a favorable prognosis associated with a protective immune microenvironment and a better response to targeted drugs. Conversely, the high-risk group displayed aggressive tumor features and poor immunotherapy outcomes. Validation through qRT‒PCR confirmed the differential expression of these DRlncRNAs in KIRC cells compared to normal kidney cells, underscoring their potential functional significance in tumor biology. CONCLUSIONS: This study established a robust link between disulfidptosis-related lncRNAs and patient prognosis in KIRC, underscoring their potential as prognostic biomarkers and therapeutic targets. The differential expression of these lncRNAs in tumor versus normal tissue further highlights their relevance in KIRC pathogenesis. The predictive model not only enhances our understanding of KIRC biology but also provides a novel stratification tool for precision medicine approaches, improving treatment personalization and outcomes in KIRC patients.


Subject(s)
Carcinoma, Renal Cell , Kidney Neoplasms , RNA, Long Noncoding , RNA, Long Noncoding/genetics , Carcinoma, Renal Cell/genetics , Carcinoma, Renal Cell/immunology , Humans , Kidney Neoplasms/genetics , Kidney Neoplasms/immunology , Prognosis , Biomarkers, Tumor/genetics , Gene Expression Regulation, Neoplastic , Male
3.
Sci Bull (Beijing) ; 69(17): 2745-2755, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-39095273

ABSTRACT

Chemotherapy is the first-line treatment for cancer, but its systemic toxicity can be severe. Tumor-selective prodrug activation offers promising opportunities to reduce systemic toxicity. Here, we present a strategy for activating prodrugs using radiopharmaceuticals. This strategy enables the targeted release of chemotherapeutic agents due to the high tumor-targeting capability of radiopharmaceuticals. [18F]FDG (2-[18F]-fluoro-2-deoxy-D-glucose), one of the most widely used radiopharmaceuticals in clinics, can trigger Pt(IV) complex for controlled release of axial ligands in tumors, it might be mediated by hydrated electrons generated by water radiolysis resulting from the decay of radionuclide 18F. Its application offers the controlled release of fluorogenic probes and prodrugs in living cells and tumor-bearing mice. Of note, an OxaliPt(IV) linker is designed to construct an [18F]FDG-activated antibody-drug conjugate (Pt-ADC). Sequential injection of Pt-ADC and [18F]FDG efficiently releases the toxin in the tumor and remarkably suppresses the tumor growth. Radiotherapy is booming as a perturbing tool for prodrug activation, and we find that [18F]FDG is capable of deprotecting various radiotherapy-removable protecting groups (RPGs). Our results suggest that tumor-selective radiopharmaceutical may function as a trigger, for developing innovative prodrug activation strategies with enhanced tumor selectivity.


Subject(s)
Fluorodeoxyglucose F18 , Prodrugs , Radiopharmaceuticals , Prodrugs/pharmacology , Prodrugs/therapeutic use , Prodrugs/chemistry , Animals , Radiopharmaceuticals/therapeutic use , Radiopharmaceuticals/pharmacology , Radiopharmaceuticals/chemistry , Mice , Humans , Fluorodeoxyglucose F18/therapeutic use , Fluorodeoxyglucose F18/pharmacokinetics , Neoplasms/drug therapy , Neoplasms/radiotherapy , Neoplasms/diagnostic imaging , Neoplasms/metabolism , Cell Line, Tumor , Immunoconjugates/pharmacology , Immunoconjugates/therapeutic use , Immunoconjugates/chemistry , Immunoconjugates/pharmacokinetics , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/chemistry , Antineoplastic Agents/administration & dosage
4.
Adv Sci (Weinh) ; 11(36): e2406475, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39041888

ABSTRACT

Practical application of lithium-sulfur (Li-S) batteries is severely impeded by the random shuttling of soluble lithium polysulfides (LiPSs), sluggish sulfur redox kinetics, and uncontrollable growth of lithium dendrites, particularly under high sulfur loading and lean electrolyte conditions. Here, nitrogen-doped bronze-phase TiO2(B) nanosheets with oxygen vacancies (OVs) grown in situ on MXenes layers (N-TiO2- x(B)-MXenes) as multifunctional interlayers are designed. The N-TiO2- x(B)-MXenes show reduced bandgap of 1.10 eV and high LiPSs adsorption-conversion-nucleation-decomposition efficiency, leading to remarkably enhanced sulfur redox kinetics. Moreover, they also have lithiophilic nature that can effectively suppress dendrites growth. The cell based on the N-TiO2- x(B)-MXenes interlayer under sulfur loading of 2.5 mg cm-2 delivers superior cycling performance with a high specific capacity of 690.7 mAh g-1 over 600 cycles at 1.0 C. It still has a notable areal capacity of 6.15 mAh cm-2 after 50 cycles even under a high sulfur loading of 7.2 mg cm-2 and a low electrolyte-to-sulfur (E/S) ratio of 6.4 µL mg-1. The Li-symmetrical battery with the N-TiO2- x(B)-MXenes interlayer showcases a low over-potential fluctuation with 21.0 mV throughout continuous lithium plating/stripping for 1000 h. This work offers valuable insights into the manipulation of defects and heterostructures to achieve high-energy Li-S batteries.

5.
Spectrochim Acta A Mol Biomol Spectrosc ; 322: 124834, 2024 Dec 05.
Article in English | MEDLINE | ID: mdl-39032231

ABSTRACT

Iron ion (Fe3+) detection is crucial for human health since it plays a crucial role in many physiological activities. In this work, a novel Schiff-base functionalized cyanine derivative (CyPy) was synthesized, which was successfully assembled on the surface of upconversion nanoparticles (UCNPs) through an amphiphilic polymer encapsulation method. In the as-designed nanoprobe, CyPy, a recognizer of Fe3+, is served as energy donor and ß-NaYF4:Yb,Er upconversion nanoparticles are adopted as energy acceptor. As a result, a 93-fold enhancement of upconversion luminescence is achieved. The efficient energy transfer from CyPy to ß-NaYF4:Yb,Er endows the nanoprobe a high sensitivity for Fe3+ in water with a low detection limit of 0.21 µM. Moreover, the nanoprobe has been successfully applied for Fe3+ determination in human serum and tap water samples with recovery ranges of 95 %-105 % and 97 %-106 %, respectively. Moreover, their relative standard deviations are all below 3.72 %. This work provides a sensitive and efficient methodology for Fe3+ detection in clinical and environmental testing.


Subject(s)
Iron , Lanthanoid Series Elements , Limit of Detection , Nanoparticles , Humans , Iron/analysis , Iron/chemistry , Iron/blood , Nanoparticles/chemistry , Lanthanoid Series Elements/chemistry , Drinking Water/analysis , Coloring Agents/chemistry , Water/chemistry
6.
Aging Med (Milton) ; 7(3): 368-383, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38975315

ABSTRACT

Objectives: We hope to offer a comprehensive understanding of the advancements and patterns in research on PND. Methods: We performed a thorough search on the Web of Science Core Collection to locate relevant studies published from 1969 to 2022 and utilized four distinct tools, namely VOSviewer (J Data Inf Sci, 2017, 2, 1; J Am Soc Inf Sci, 1973, 24, 265; Amer Doc, 1963, 14, 10 and Scientometrics, 2010, 82, 581), CiteSpace (Scientometrics, 2010, 84, 523), Scimago Graphica, and R-bibliometrix which allowed us to examine various aspects. Results: We included a total of 6787 articles and reviews for analysis which described PND research, the sources, and the subfields; highlighted the significant developments in this field; identified three main directions in PND.Conclusion: This study highlights the rapid growth of research on PND in recent years and provided an overview of previous studies in the field of PND, thereby establishing the overall landscape of PND research and identifying potential avenues for future investigations. Methods: We performed a thorough search on the Web of Science Core Collection to locate relevant studies published from 1969 to 2022. To perform bibliometric analysis and network visualization, we utilized four distinct tools, namely VOSviewer (J Data Inf Sci, 2017, 2, 1; J Am Soc Inf Sci, 1973, 24, 265; Amer Doc, 1963, 14, 10 and Scientometrics, 2010, 82, 581), CiteSpace (Scientometrics, 2010, 84, 523), Scimago Graphica, and R-bibliometrix. These tools allowed us to examine various aspects, including the yearly publication output, the contribution of different countries or regions, the involvement of active journals, co-citation analysis, publication status, keywords, and terms, as well as scientific categories. We hope to offer a comprehensive understanding of the advancements and patterns in research on PND. The insights gained from this study can assist researchers and clinicians in enhancing the management and implementation of their work in this field. Results: In this study, we included a total of 6787 articles and reviews for analysis. First, publication trends and contribution by country analysis described PND research. Second, a historical analysis described PND research, the sources, and the subfields. Third, an analysis of keywords highlighted the significant developments in this field. Fourth, an analysis of research themes identified three main directions in PND. Conclusion: In summary, the research volume exhibits exponential growth over time. Furthermore, the majority of contributions originate from Western countries and China. The interdisciplinary nature of the field is evident, with its roots in biology and medicine and further branching into psychology and social sciences. POCD, delirium-predominant associated clinical management were major research themes about PND.

7.
Ying Yong Sheng Tai Xue Bao ; 35(5): 1169-1176, 2024 May.
Article in Chinese | MEDLINE | ID: mdl-38886414

ABSTRACT

In recent years, a surge in drought occurrences has dramatically impacted tree growth worldwide. We examined the ecological resilience of Larix principis-rupprechtii plantations with varying densities (1950, 2355, and 2595 trees·hm-2) at the Saihanba Mechanical Forest Farm, by extracting the increment cores using the standard dendrochronological method to measure individual-tree basal area increments (BAI) as part of our assessment of ecological resilience, including resistance (Rt), recovery (Rc), and resilience (Rs). The results showed that drought events occurred in 2006-2010, 2015, and 2018. The Rt for L. principis-rupprechtii plantations varied from 0.76 to 2.01 across three drought events, indicating generally high resistance, except for the plantation with 2355 trees·hm-2 during the second dry year (Rt=0.69). The Rt for the plantation with 2595 trees·hm-2 significantly decreased across all drought events, while no significant change was observed in the plantations with 1950 and 2355 trees·hm-2. The Rc showed no differences in response to a single drought event across plantation densities, with a significant upward trend for all the densities with each occurrence of drought event. There was no significant difference in the resilience of different densities of L. principis-rupprechtii to the first drought event, whereas the plantation with 2595 trees·hm-2 exhibited significantly lower Rs during the second and third drought events compared with 1950 and 2355 trees·hm-2, respectively. During the 2015 drought event, plantation with 2595 trees·hm-2 experienced a significant growth decline (radial growth change rate was -26.5%), while no such decline was observed in the plantations with 1950 and 2355 trees·hm-2. Overall, the plantation with 2595 trees·hm-2 demonstrated the lowest resilience to drought events.


Subject(s)
Droughts , Larix , Larix/growth & development , China , Ecosystem , Population Density
8.
Sci Total Environ ; 942: 173713, 2024 Sep 10.
Article in English | MEDLINE | ID: mdl-38848910

ABSTRACT

Volatile organic compounds (VOCs) serve as crucial precursors to surface ozone and secondary organic aerosols (SOA). In response to severe air pollution challenges, China has implemented key air quality control policies from 2013 to 2021. Despite these efforts, a comprehensive understanding of the chemical composition and sources of urban atmospheric VOCs and their responses to emission reduction measures remains limited. Our study focuses on analyzing VOCs composition and concentrations during the winters of 2013 and 2021 through online field observations in urban Nanjing, a typical city in the Yangtze River Delta region of China. Using a machine learning approach, we found a notable reduction in total VOCs concentration from 52.4 ± 30.4 ppb to 33.9 ± 21.6 ppb between the two years, with dominant contributions (approximately 94.3 %) associated with anthropogenic emission control. Furthermore, alkanes emerged as the major contributors (48.6 %) to such anthropogenic-driven decline. The total SOA formation potential decreased by approximately 27.4 %, with aromatics identified as the major contributing species. Positive matrix factorization analysis identified six sources. In 2013, prominent contributors were solid fuel combustion (43.6 %), vehicle emission (16.7 %), and paint and solvent use (12.8 %). By 2021, major sources shifted to solid fuel combustion (31.9 %), liquefied petroleum gas and natural gas (26.8 %), and vehicle emission (25.5 %). Solid fuel combustion emerged as the primary driver for total VOCs reduction. The lifetime carcinogenic risk in 2021 decreased by 72.6 % relative to 2013, emphasizing the need to address liquefied petroleum gas and natural gas source, and vehicle emissions for improved human health. Our findings contribute critical insights for policymakers working on effective air quality management.

9.
Sci Rep ; 14(1): 10549, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38719886

ABSTRACT

In the construction stage, due to construction errors and longitudinal differential settlement during tunnel operation, the amount of dislocation and opening at the segment joint increases, increasing the likelihood of water leakage. Therefore, it is necessary to conduct an in-depth study on the influence of the amount of dislocation and opening at the segment joints on the contact stress of the longitudinal section. Firstly, through theoretical analysis, this paper deduces that the waterproof performance of the gasket depends not only on its own contact area, linear compression stiffness, and Poisson's ratio but also on the height of the segment joint specimen and the amount of joint opening caused by the sinking offset angle. Then, the effects of different openings and dislocations at the segment joints on the contact stress of the segment gasket section were compared using numerical simulation and model experiments. Through numerical simulation, it is found that the dislocation has a greater influence on the longitudinal left section. The average contact stress at 16 mm is 28.3% lower than that at 4 mm, and the influence of the opening amount on the sealing gasket section is greater than that of the dislocation. Combined with the test results, it is also shown that the influence of the opening amount of the waterproof performance at the segment joint is greater than that of the dislocation, and the waterproof rate of the segment gasket section joint is greater than 40% under the modified working condition.

10.
Bioresour Technol ; 402: 130794, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38703966

ABSTRACT

Carbon deficits in inflow frequently lead to inefficient nitrogen removal in constructed wetlands (CWs) treating tailwater. Solid carbon sources, commonly employed to enhance denitrification in CWs, increase carbon emissions. In this study, MnO2 was incorporated into polycaprolactone substrates within CWs, significantly enhancing NH4+-N and NO3--N removal efficiencies by 48.26-59.78 % and 96.84-137.23 %, respectively. These improvements were attributed to enriched nitrogen-removal-related enzymes and increased plant absorption. Under high nitrogen loads (9.55 ± 0.34 g/m3/d), emissions of greenhouse gases (CO2, CH4, and N2O) decreased by 147.23-202.51 %, 14.53-86.76 %, and 63.36-87.36 %, respectively. N2O emissions were reduced through bolstered microbial nitrogen removal pathways by polycaprolactone and MnO2. CH4 accumulation was mitigated by the increased methanotrophs and dampened methanogenesis, modulated by manganese. Additionally, manganese-induced increases in photosynthetic pigment contents (21.28-64.65 %) fostered CO2 sequestration through plant photosynthesis. This research provides innovative perspectives on enhancing nitrogen removal and reducing greenhouse gas emissions in constructed wetlands with polymeric substrates.


Subject(s)
Carbon , Methane , Nitrogen , Wetlands , Nitrogen/metabolism , Carbon/metabolism , Methane/metabolism , Polyesters/metabolism , Polyesters/chemistry , Manganese/pharmacology , Plants/metabolism , Denitrification , Nitrous Oxide/metabolism , Carbon Dioxide/metabolism , Biodegradation, Environmental , Photosynthesis
11.
Int J Biol Macromol ; 270(Pt 2): 132383, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38754667

ABSTRACT

Halogenated Organic Phosphate Esters (OPEs) are commonly found in plasticizers and flame retardants. However, they are one kind of persistent contaminants that can pose a significant threat to human health and ecosystem as new environmental estrogen. In this study, two representative halogenated OPEs, tris(1,3-dichloro-2-propyl) phosphate (TDCP) and tris(2,3-dibromopropyl) phosphate (TDBP), were selected as experimental subjects to investigate their interaction with human serum albumin (HSA). Despite having similar structures, the two ligands exhibited contrasting effects on enzyme activity of HSA, TDCP inhibiting enzyme activity and TDBP activating it. Furthermore, both TDCP and TDBP could bind to HSA at site I, interacted with Arg222 and other residues, and made the conformation of HSA unfolded. Thermodynamic parameters indicated the main driving forces between TDBP and HSA were hydrogen bonding and van der Waals forces, while TDCP was mainly hydrophobic force. Molecular simulations found that more hydrogen bonds of HSA-TDBP formed during the binding process, and the larger charge area of TDBP than TDCP could partially account for the differences observed in their binding abilities to HSA. Notably, the cytotoxicity of TDBP/TDCP was inversely proportional to their binding ability to HSA, implying a new method for determining the cytotoxicity of halogenated OPEs in vitro.


Subject(s)
Esters , Protein Binding , Serum Albumin, Human , Humans , Esters/chemistry , Serum Albumin, Human/chemistry , Serum Albumin, Human/metabolism , Molecular Dynamics Simulation , Thermodynamics , Molecular Docking Simulation , Hydrogen Bonding , Organophosphates/chemistry , Organophosphates/metabolism , Binding Sites , Halogenation
12.
Cardiovasc Diabetol ; 23(1): 128, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38622690

ABSTRACT

BACKGROUND: Compelling evidence suggests that calcium/phosphorus homeostasis-related parameters may be linked to diabetes mellitus and cardiovascular events. However, few studies have investigated the association of fibroblast growth factor 23 (FGF23), α-klotho and FGF23/α-klotho ratio with atherosclerosis in patients with type 2 diabetes mellitus (T2DM). OBJECTIVE: This study was designed to evaluate whether FGF23, α-klotho and FGF23/α-klotho ratio are associated with T2DM and further to explore the relationships between these three factors and atherosclerosis in Chinese patients with T2DM. METHODS: Serum FGF23 and α-klotho levels were measured via an enzyme-linked immunosorbent assay (ELISA) kit, and the carotid intima-media thickness (CIMT) was assessed via high-resolution color Doppler ultrasonography. The associations of serum FGF23, α-klotho and FGF23/α-klotho ratio with atherosclerosis in T2DM patients were evaluated using multivariable logistic regression models. RESULTS: This cross-sectional study involved 403 subjects (207 with T2DM and 196 without T2DM), 41.7% of the patients had atherosclerosis, and 67.2% of the carotid intima were thickened to a thickness greater than 0.9 mm. Compared with those in the lowest tertile, higher tertiles of FGF23 levels and FGF23/α-klotho ratio were positively associated with T2DM after adjusting for covariates, and serum α-klotho concentration was inversely correlated with T2DM (all P values < 0.01). Moreover, elevated serum FGF23 levels and FGF23/α-klotho ratio were positively associated with CIMT and carotid atherosclerosis in T2DM patients (all P values < 0.01). Further spline analysis similarly revealed linear dose‒response relationship (all P values < 0.01). And there was still significant differences in CIMT and carotid atherosclerosis between the highest group of α-klotho and the reference group in T2DM patients (P values = 0.05). CONCLUSIONS: T2DM was positively linearly related to serum FGF23 concentration and FGF23/α-klotho ratio, and negatively correlated with serum α-klotho concentration. Furthermore, both FGF23 and FGF23/α-klotho ratio were positively correlated with CIMT and atherosclerosis in T2DM patients, while α-klotho was inversely correlated with both CIMT and atherosclerosis, although the associations were not completely significant. Prospective exploration and potential mechanisms underlying these associations remain to be further elucidated.


Subject(s)
Atherosclerosis , Carotid Artery Diseases , Diabetes Mellitus, Type 2 , Humans , Carotid Artery Diseases/diagnostic imaging , Carotid Artery Diseases/etiology , Carotid Intima-Media Thickness , Cross-Sectional Studies , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/diagnosis , Prospective Studies , Risk Factors
13.
Heliyon ; 10(6): e27289, 2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38510030

ABSTRACT

This article addresses the issues of unreasonable water scheduling and high costs in coal mine shafts, proposing a hierarchical optimization scheduling strategy. Taking the water quality and quantity of a certain mining area in Inner Mongolia as the research object, it designs the objective function with the highest reuse efficiency and the lowest reuse cost of mine water resources, and establishes the constraint conditions of water quality and quantity for each water-using unit. In response to the problem that traditional genetic algorithms are prone to local optima, an adaptive autobiographical operator is proposed and improved based on Metropolis principle of simulated annealing algorithm. The improved algorithm is applied to the calculation of the scheduling model, and the results show that the recovery cost in the heating season is reduced by 66779.36 CNY/month, a decrease of 10.34%; the recovery cost in the non-heating season is reduced by 61469.28 CNY/month, a decrease of 9.91%. At the same time, the heating season and the non-heating season have reduced by 136.99 h/month and 154.52 h/month respectively, significantly reducing the recovery cost and time.

14.
Mar Environ Res ; 194: 106318, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38218006

ABSTRACT

Mangrove wetlands are vital coastal ecosystems that can absorb and accumulate pollutants. Polycyclic aromatic hydrocarbons (PAHs) are persistent organic pollutants that pose potential risks to ecosystems and human health. However, their source and transport fate in mangrove areas are poorly understood. This study investigates 29 PAHs pollution of water and sediment in Zhangjiangkou Mangrove Wetland, the northernmost large-scale mangrove wetland reserve in China. We examine the distribution, source, transport mechanisms and risk assessment of PAHs. The results show that the concentrations of PAHs in mangrove sediment range from 55.62 to 347.36 ng/g (DW), with 5-ring PAHs being the dominant species. While the concentrations of PAHs in surface water range from 10.61 to 46.39 ng/L, with 2-ring PAHs and alkylated PAHs being the dominant species. The PAHs concentrations in surface water and sediment of river are higher than those in mangrove area, indicating that mangrove water could receive PAHs through tidal exchange. Based on diagnostic ratios (DRs), principal component analysis (PCA), and positive matrix factorization (PMF), we infer that the leaf deposition (48.55%) could be an important pathway of PAHs in mangrove sediment except for river water transport (51.45%), while the PAHs in estuary water originate mainly from point sources such as biomass burning (50.96%) and traffic emission (49.04%). The range of toxic equivalents in surface water and sediment was 2.73-16.09 ng TEQ g-1 and 0.03-3.63 ng/L, respectively. Although the ecological risk assessment suggests that the PAHs pollution in surface water and sediment poses a low risk, we recommend more attention to the protection of the mangrove ecosystem. This study reveals that mangrove leaf falling might be a significant mechanism of PAH sequestration in the mangrove system, which deserves more attention in future research.


Subject(s)
Polycyclic Aromatic Hydrocarbons , Water Pollutants, Chemical , Humans , Polycyclic Aromatic Hydrocarbons/analysis , Ecosystem , Accidental Falls , Environmental Monitoring/methods , Water Pollutants, Chemical/analysis , China , Rivers , Risk Assessment , Water , Geologic Sediments
15.
Eur J Med Res ; 29(1): 89, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38291496

ABSTRACT

BACKGROUND: Kidney cancer is an immunogenic solid tumor, characterized by high tumor burden and infiltration of CD8+ T cells. Although immunotherapy targeting the PD1/CTLA-4 axis has demonstrated excellent clinical efficacy, clinical outcomes in most patients are poor. METHODS: We used the RNA sequencing data from the GEO database for KIRC GSE121636 and normal kidney tissue GSE131685, and performed single-cell analysis for cluster identification, pathway enrichment, and CD8+ T cell-associated gene identification. Subsequently, the significance of different CD8+ T-cell associated gene subtypes was elucidated by consensus clustering, pathway analysis, mutated gene analysis, and KIRC immune microenvironment analysis in the TCGA-KIRC disease cohort. Single gene analysis identified LAG3 as the most critical CD8+ T-cell-associated gene and its function was verified by cell phenotype and immunohistochemistry in KIRC. RESULTS: In the present study, CD8+ T-cell associated genes in KIRC were screened, including GZMK, CD27, CCL4L2, FXYD2, LAG3, RGS1, CST7, DUSP4, CD8A, and TRBV20-1 and an immunological risk prognostic model was constructed (risk score = - 0.291858656434841*GZMK - 0.192758342489394*FXYD2 + 0.625023643446193*LAG3 + 0.161324477181591*RGS1 - 0.380169045328895*DUSP4 - 0.107221347575037*TRBV20-1). LAG3 was identified and proved as the most critical CD8+ T cell-associated gene in KIRC. CONCLUSION: We proposed and constructed an immunological risk prognostic model for CD8+ T cell-associated genes and identified LAG3 as a pivotal gene for KIRC progression and CD8+ T-cell infiltration. The model comprehensively explained the immune microenvironment and provided novel immune-related therapeutic targets and biomarkers in KIRC.


Subject(s)
Carcinoma, Renal Cell , Kidney Neoplasms , Humans , Prognosis , CD8-Positive T-Lymphocytes , Kidney , Carcinoma, Renal Cell/genetics , Computational Biology , Kidney Neoplasms/genetics , Tumor Microenvironment/genetics
16.
Front Immunol ; 15: 1288240, 2024.
Article in English | MEDLINE | ID: mdl-38292868

ABSTRACT

Background: Disulfidptosis, an emerging type of programmed cell death, plays a pivotal role in various cancer types, notably impacting the progression of kidney renal clear cell carcinoma (KIRC) through the tumor microenvironment (TME). However, the specific involvement of disulfidptosis within the TME remains elusive. Methods: Analyzing 41,784 single cells obtained from seven samples of KIRC through single-cell RNA sequencing (scRNA-seq), this study employed nonnegative matrix factorization (NMF) to assess 24 disulfidptosis regulators. Pseudotime analysis, intercellular communication mapping, determination of transcription factor activities (TFs), and metabolic profiling of the TME subgroup in KIRC were conducted using Monocle, CellChat, SCENIC, and scMetabolism. Additionally, public cohorts were utilized to predict prognosis and immune responses within the TME subgroup of KIRC. Results: Through NMF clustering and differential expression marker genes, fibroblasts, macrophages, monocytes, T cells, and B cells were categorized into four to six distinct subgroups. Furthermore, this investigation revealed the correlation between disulfidptosis regulatory factors and the biological traits, as well as the pseudotime trajectories of TME subgroups. Notably, disulfidptosis-mediated TME subgroups (DSTN+CD4T-C1 and FLNA+CD4T-C2) demonstrated significant prognostic value and immune responses in patients with KIRC. Multiple immunohistochemistry (mIHC) assays identified marker expression within both cell clusters. Moreover, CellChat analysis unveiled diverse and extensive interactions between disulfidptosis-mediated TME subgroups and tumor epithelial cells, highlighting the TNFSF12-TNFRSF12A ligand-receptor pair as mediators between DSTN+CD4T-C1, FLNA+CD4T-C2, and epithelial cells. Conclusion: Our study sheds light on the role of disulfidptosis-mediated intercellular communication in regulating the biological characteristics of the TME. These findings offer valuable insights for patients with KIRC, potentially guiding personalized immunotherapy approaches.


Subject(s)
Carcinoma, Renal Cell , Kidney Neoplasms , Humans , Tumor Microenvironment , Carcinoma, Renal Cell/therapy , Cell Communication , Immunotherapy , Kidney Neoplasms/therapy , Kidney
17.
Diabetes Res Clin Pract ; 208: 111094, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38224876

ABSTRACT

OBJECTIVE: This Mendelian randomization (MR) study aimed to investigate the relationships between type 1 diabetes (T1D), type 2 diabetes (T2D), and glycemic traits, including fasting insulin, fasting glucose, and HbA1c, with cardiovascular diseases (CVDs). METHODS: We selected genetic instruments for predisposition to T1D, T2D, fasting insulin, fasting glucose, and HbA1c based on published genome-wide association studies. Using a 2-Sample MR approach, we assessed associations with 12 common CVDs sourced from the FinnGen and UK Biobank studies, along with stroke subtypes obtained from the GIGASTROKE and MEGASTROKE Consortium. RESULTS: T1D was associated with SVS. T2D showed associations with AIS, LAA, CES, SVS, coronary heart disease, myocardial infarction, pulmonary embolism, DVT of lower extremities, peripheral vascular diseases. Genetically predicted higher HbA1c levels were associated with eight CVDs. The results of MVMR aligned with the primary findings for T1D and T2D. CONCLUSIONS: T1D and T2D exhibit different genetic predisposition to CVDs. BMI, LDL, and HDL play intermediary roles in connecting TID and T2D to specific types of CVDs, providing insights into the potential underlying pathways and mechanisms involved in these relationships. Strategies aimed at achieving sustained reductions in HbA1c levels may offer potential for reducing the risk of various CVDs.


Subject(s)
Cardiovascular Diseases , Diabetes Mellitus, Type 1 , Diabetes Mellitus, Type 2 , Humans , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/complications , Risk Factors , Cardiovascular Diseases/epidemiology , Cardiovascular Diseases/genetics , Cardiovascular Diseases/complications , Glycated Hemoglobin , Diabetes Mellitus, Type 1/genetics , Diabetes Mellitus, Type 1/complications , Genome-Wide Association Study , Mendelian Randomization Analysis , Blood Glucose/metabolism , Insulin/metabolism , Polymorphism, Single Nucleotide
18.
Rev Sci Instrum ; 94(6)2023 Jun 01.
Article in English | MEDLINE | ID: mdl-37862542

ABSTRACT

Recently, the drive level capacitance profiling (DLCP) technique has been proven to be effective in resolving the spatial and energetic distributions of defects through feasible measurements. However, the discussion on its ranges and resolutions is still missing, which is urgent in evaluating the validity of the calculated defect profiles. In this work, we propose a method to analyze the ranges and resolutions of DLCP. Assuming that the test instrument has more influence on the experimental results than the experimental environment, this method can be used to evaluate the resolution of DLCP for different test instruments. Through revisiting the equations involved in DLCP, we learned that the sources of the limits and resolutions are (1) the instrument system error and inherent resolution and (2) the device impedance. Consequently, from the study of device impedance and the measuring instrument system error, the resolutions of DLCP could be calculated according to the error propagation theory. We provide the spatial distribution of the minimum selection range of AC signal δV used by DLCP and the spatial resolution of DLCP technology. This method can be used to evaluate the resolution of DLCP for different test instruments.

19.
Ying Yong Sheng Tai Xue Bao ; 34(10): 2629-2636, 2023 Oct.
Article in Chinese | MEDLINE | ID: mdl-37897269

ABSTRACT

To investigate the impacts of abrupt warming on tree growth, we collected tree ring cores from larch (Larix principis-rupprechtii) in three different sites, including Saihanba National Nature Reserve, Pangquangou National Nature Reserve, and Fengning Qiansongba National Forest Park. Based on the tree ring method, Mann-Kendall test was used to examine the occurrence time of temperature rise mutation. We further analyzed the radial growth law of larch before and after the temperature mutation and its correlation with the monthly climate data. The results showed that the sudden temperature rise occurred in the Saihanba area in 1987, the Fengning area in 1989, and the Pangquangou area 1994. Before the sudden warming, there was no significant trend for the radial growth in all the three regions. After the sudden warming, however, it decreased significantly (with a decrease rate of 0.08·10 a-1) in Saihanba area. The radial growth of larch increased significantly in Pangquangou area (with an increase rate of 0.10·10 a-1), while no significant change was observed in the Fengning area. Before the sudden warming, there was a significant positive correlation between the radial growth of larch in the Saihanba area and the highest temperature in May and June. After the sudden warming, there was a significant positive correlation with precipita-tion in July, and a highly significant positive correlation with the standardized precipitation evapotranspiration index(SPEI) from September of the previous year to July. Prior to the sudden warming, there was no significant relationship between the radial growth of larch in the Pangquangou area and monthly climate factors. However, after the sudden warming, a significant positive correlation was found with the lowest temperature in September of the pre-vious year. Before the sudden warming, the radial growth of larch in Fengning area was significantly negatively correlated with the lowest average temperature in July. After the sudden warming, it showed a significant negative correlation with the average and highest temperatures in June. Accordingly, the radial growth of larch in the Saihanba area experienced drought stress following a sudden temperature change. If temperature continues to rise in the future, larch in the Fengning area would also face drought stress. Conversely, warming conditions would be beneficial for the radial growth of larch in the Pangquangou area.


Subject(s)
Larix , Larix/physiology , Climate , Forests , Trees , Temperature , China
20.
Biosensors (Basel) ; 13(7)2023 Jul 07.
Article in English | MEDLINE | ID: mdl-37504113

ABSTRACT

Flexible conductive fibers have shown tremendous potential in diverse fields, including health monitoring, intelligent robotics, and human-machine interaction. Nevertheless, most conventional flexible conductive materials face challenges in meeting the high conductivity and stretchability requirements. In this study, we introduce a knitted structure of liquid metal conductive fibers. The knitted structure of liquid metal fiber significantly reduces the resistance variation under tension and exhibits favorable durability, as evidenced by the results of cyclic tensile testing, which indicate that their resistance only undergoes a slight increase (<3%) after 1300 cycles. Furthermore, we demonstrate the integration of these liquid metal fibers with various rigid electronic components, thereby facilitating the production of pliable LED arrays and intelligent garments for electrocardiogram (ECG) monitoring. The LED array underwent a 30 min machine wash, during which it consistently retained its normal functionality. These findings evince the devices' robust stable circuit functionality and water resistance that remain unaffected by daily human activities. The liquid metal knitted fibers offer great promise for advancing the field of flexible conductive fibers. Their exceptional electrical and mechanical properties, combined with compatibility with existing electronic components, open new possibilities for applications in the physiological signal detection of carriers, human-machine interaction, and large-area electronic skin.


Subject(s)
Robotics , Wearable Electronic Devices , Humans , Electronics , Metals , Electric Conductivity
SELECTION OF CITATIONS
SEARCH DETAIL