Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 178
Filter
1.
Apoptosis ; 2024 Jun 02.
Article in English | MEDLINE | ID: mdl-38824477

ABSTRACT

The upregulation of programmed death ligand 1 (PD-L1) plays a crucial role in facilitating cancer cells to evade immune surveillance through immunosuppression. However, the precise regulatory mechanisms of PD-L1 in hepatocellular carcinoma (HCC) remain undefined. The correlation between PD-L1 and ubiquitin-like molecules (UBLs) was studied using sequencing data from 20 HCC patients in our center, combined with TCGA data. Specifically, the association between FAT10 and PD-L1 was further validated at both the protein and mRNA levels in HCC tissues from our center. Subsequently, the effect of FAT10 on tumor progression and immune suppression was examined through both in vivo and in vitro experiments. Utilizing sequencing data, qPCR, and Western blotting assays, we confirmed that FAT10 was highly expressed in HCC tissues and positively correlated with PD-L1 expression. Additionally, in vitro experiments demonstrated that the overexpression of FAT10 fostered the proliferation, migration, and invasion of HCC cells. Furthermore, the overexpression of FAT10 in HCC cells led to an increase in PD-L1 expression, resulting in the inhibition of T cell proliferation and the enhancement of HCC cell resistance to T cell-mediated cytotoxicity. Moreover, in vivo experiments utilizing the C57BL/6 mouse model revealed that overexpression of FAT10 effectively suppressed the infiltration of CD8 + GZMB + and CD8 + Ki67 + T cells, as well as reduced serum levels of TNF-α and IFN-γ. Mechanistically, we further identified that FAT10 upregulates PD-L1 expression via activating the PI3K/AKT/mTOR pathway, but not in a ubiquitin-like modification. In conclusion, our findings indicate that FAT10 promotes immune evasion of HCC via upregulating PD-L1 expression, suggesting its potential as a novel target to enhance the efficiency of immunotherapy in HCC.

2.
Science ; 384(6697): 793-798, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38753778

ABSTRACT

Stereoselective construction of γ- and δ-stereocenters in carbonyl compounds is a pivotal objective in asymmetric synthesis. Here, we report chiral bifunctional oxazoline-pyridone ligands that enable enantioselective palladium-catalyzed remote γ-C-H (hetero)arylations of free cycloalkane carboxylic acids, which are essential carbocyclic building blocks in organic synthesis. The reaction establishes γ-tertiary and α-quaternary stereocenters simultaneously in up to >99% enantiomeric excess, providing access to a wide range of cyclic chiral synthons and bioactive molecules. The sequential enantioselective editing of two methylene C-H bonds can be achieved by using chiral ligands with opposite configuration to construct carbocycles containing three chiral centers. Enantioselective remote δ-C-H (hetero)arylation is also realized to establish δ-stereocenters that are particularly challenging to access using classical methodologies.

3.
Accid Anal Prev ; 204: 107647, 2024 May 25.
Article in English | MEDLINE | ID: mdl-38796999

ABSTRACT

Early warning of driving risks can effectively prevent collisions. However, numerous studies that predicted driving risks have suffered from the use of single data sources, insufficiently advanced models, and lack of time window analysis. To address these issues, this paper proposes a self-attention-based bidirectional long short-term memory (Att-Bi-LSTM) network model to predict driving risk based on multi-source data. First, driving simulation tests are conducted. Driver demographic, operation, visual, and physiological data as well as kinematic data are collected. Then, the driving risks are classified into no risk, low risk, medium risk, and high risk. Next, the Att-Bi-LSTM model is constructed, and convolutional neural network (CNN), CNN-LSTM, CatBoost, LightGBM, and XGBoost are employed for comparison. To generate the inputs and outputs of the models, observation, interval, and prediction time windows are introduced. The results show that the Att-Bi-LSTM model using early-fusion method significantly outperforms the five comparison models, with a macro-average F1-score of 0.914. The results of ablation studies indicate that the Bi-LSTM layers and self-attention layer have achieved the expected effect, which is crucial for improving the model's performance. As the interval or prediction time window is extended, the accuracy of the prediction results gradually decreases. However, as the observation time window is extended, the results first improve and then become stable. Compared to using only relative kinematic data, using all data (i.e., multi-source data) is shown to improve the F1-score by 0.061. This study provides an effective method for driving risk prediction and supports the improvement of advanced driver assistance systems.

4.
Adv Sci (Weinh) ; : e2304551, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38810137

ABSTRACT

Mammalian cochlear hair cells (HCs) are essential for hearing, and damage to HCs results in severe hearing impairment. Damaged HCs can be regenerated by neighboring supporting cells (SCs), thus the functional regeneration of HCs is the main goal for the restoration of auditory function in vivo. Here, cochlear SC trans-differentiation into outer and inner HC by the induced expression of the key transcription factors Atoh1 and its co-regulators Gfi1, Pou4f3, and Six1 (GPAS), which are necessary for SCs that are destined for HC development and maturation via the AAV-ie targeting the inner ear stem cells are successfully achieved. Single-cell nuclear sequencing and lineaging tracing results showed that the majority of new Atoh1-derived HCs are in a state of initiating differentiation, while GP (Gfi1, Pou4f3) and GPS (Gfi1, Pou4f3, and Six1) enhanced the Atoh1-induced new HCs into inner and outer HCs. Moreover, the patch-clamp analysis indicated that newborn inner HCs induced by GPAS forced expression have similar electrophysiological characteristics to those of native inner HCs. Also, GPAS can induce HC regeneration in the HC-damaged mice model. In summary, the study demonstrates that AAV-mediated co-regulation of multiple genes, such as GPAS, is an effective means to achieve functional HC regeneration in the mouse cochlea.

5.
Nat Commun ; 15(1): 3066, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38594254

ABSTRACT

Releasing pre-strained two-dimensional nanomembranes to assemble on-chip three-dimensional devices is crucial for upcoming advanced electronic and optoelectronic applications. However, the release process is affected by many unclear factors, hindering the transition from laboratory to industrial applications. Here, we propose a quasistatic multilevel finite element modeling to assemble three-dimensional structures from two-dimensional nanomembranes and offer verification results by various bilayer nanomembranes. Take Si/Cr nanomembrane as an example, we confirm that the three-dimensional structural formation is governed by both the minimum energy state and the geometric constraints imposed by the edges of the sacrificial layer. Large-scale, high-yield fabrication of three-dimensional structures is achieved, and two distinct three-dimensional structures are assembled from the same precursor. Six types of three-dimensional Si/Cr photodetectors are then prepared to resolve the incident angle of light with a deep neural network model, opening up possibilities for the design and manufacturing methods of More-than-Moore-era devices.

6.
Cell Death Dis ; 15(3): 191, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38443362

ABSTRACT

Circular RNAs (circRNAs) have been implicated in tumorigenesis and progression of various cancers. However, the underlying mechanisms of circRNAs in hepatocellular carcinoma (HCC) have not been fully elucidated. Herein, a new oncogenic circRNA, hsa_circ_0070039 (circNUP54), was identified to be significantly upregulated in HCC through circRNA sequencing. As verified in 68 HCC samples, circNUP54 overexpression was correlated with aggressive cancerous behaviors and poor outcomes. Moreover, the function experiments showed that knockdown of circNUP54 inhibited the malignant progression of HCC in vitro and in vivo, whereas overexpression of circNUP54 had the opposite role. Mechanistic investigations carried out by RNA pull-down, RNA immunoprecipitation, and immunofluorescence revealed that circNUP54 interacted with the RNA-binding protein Hu-antigen R (HuR) and promoted its cytoplasmic export. The cytoplasmic accumulation of HuR stabilized the downstream BIRC3 mRNA through its binding to the 3' UTR region. Consequently, the encoded protein of BIRC3, cellular inhibitor of apoptosis 2 (cIAP2), proceeded to activate the NF-κB signal pathway and ultimately contributed to HCC progression. In addition, depletion of BIRC3 rescued the pro-tumorigenic effect of circNUP54 on HCC cells. Overall, this study demonstrated that circNUP54 facilitates HCC progression via regulating the HuR/BIRC3/NF-κB axis, which may serve as a promising therapeutic target for HCC treatment.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Humans , 3' Untranslated Regions/genetics , Baculoviral IAP Repeat-Containing 3 Protein , Carcinogenesis , Carcinoma, Hepatocellular/genetics , Liver Neoplasms/genetics , NF-kappa B/genetics , RNA, Circular/genetics , RNA, Messenger/genetics
7.
Cell Prolif ; : e13633, 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38528645

ABSTRACT

Hair cell (HC) damage is a leading cause of sensorineural hearing loss, and in mammals supporting cells (SCs) are unable to divide and regenerate HCs after birth spontaneously. Procollagen C-endopeptidase enhancer 2 (Pcolce2), which encodes a glycoprotein that acts as a functional procollagen C protease enhancer, was screened as a candidate regulator of SC plasticity in our previous study. In the current study, we used adeno-associated virus (AAV)-ie (a newly developed adeno-associated virus that targets SCs) to overexpress Pcolce2 in SCs. AAV-Pcolce2 facilitated SC re-entry into the cell cycle both in cultured cochlear organoids and in the postnatal cochlea. In the neomycin-damaged model, regenerated HCs were detected after overexpression of Pcolce2, and these were derived from SCs that had re-entered the cell cycle. These findings reveal that Pcolce2 may serve as a therapeutic target for the regeneration of HCs to treat hearing loss.

8.
Angew Chem Int Ed Engl ; 63(20): e202402657, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38477874

ABSTRACT

The main group metals are commonly perceived as catalytically inert in the context of oxygen reduction reactions (ORR) due to the delocalized valence orbitals. Regulating the local environment and structure of metal center coordinated by nitrogen ligands (M-Nx) is a promising approach to accelerate catalytic dynamics. Herein, we, for the first time, report the atomically dispersed Al catalysts coordinated with N and C atoms for 4-electron ORR. The axial coordinated pyrrolyl N group (No) is constructed in the Al-N4-No moiety to regulate the p-band structure of Al center, effectively steering the local environment and structure of the square planar Al-N4 sites, which typically exhibit too strong interaction with ORR intermediates. The dynamic covalency competition of axial Al-No and Al-O bonding could endow the Al center with moderate hybridization between Al 3p orbital and O 2p orbital, alleviating the binding energy of ORR intermediates. The as-prepared Al-N4-No electrocatalyst exhibits excellent ORR activity, selectivity, and durability, along with the rapid kinetics as demonstrated by in situ Raman spectroscopy. This work offers a fundamental comprehension of the fine regulation on p-band and guides the rational design of main-group metal-based single atom catalysts.

9.
Adv Sci (Weinh) ; 11(18): e2400845, 2024 May.
Article in English | MEDLINE | ID: mdl-38520732

ABSTRACT

Complete remission of colorectal cancer (CRC) is still unachievable in the majority of patients by common fractionated radiotherapy, leaving risks of tumor metastasis and recurrence. Herein, clinical CRC samples demonstrated a difference in the phosphorylation of translation initiation factor eIF2α (p-eIF2α) and the activating transcription factor 4 (ATF4), whose increased expression by initial X-ray irradiation led to the resistance to subsequent radiotherapy. The underlying mechanism is studied in radio-resistant CT26 cells, revealing that the incomplete mitochondrial outer membrane permeabilization (iMOMP) triggered by X-ray irradiation is key for the elevated expression of p-eIF2α and ATF4, and therefore radio-resistance. This finding guided to discover that metformin and 2-DG are synergistic in reversing radio resistance by inhibiting p-eIF2α and ATF4. Liposomes loaded with metformin and 2-DG (M/D-Lipo) are thus prepared for enhancing fractionated radiotherapy of CRC, which achieved satisfactory therapeutic efficacy in both local and metastatic CRC tumors by reversing radio-resistance and preventing T lymphocyte exhaustion.


Subject(s)
Colorectal Neoplasms , Liposomes , Metformin , Mitochondria , Radiation Tolerance , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/radiotherapy , Colorectal Neoplasms/pathology , Mice , Animals , Humans , Mitochondria/metabolism , Mitochondria/drug effects , Mitochondria/radiation effects , Metformin/pharmacology , Metformin/therapeutic use , Radiation Tolerance/drug effects , Cell Line, Tumor , Disease Models, Animal , Activating Transcription Factor 4/metabolism , Activating Transcription Factor 4/genetics
10.
Nutrients ; 16(5)2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38474883

ABSTRACT

Folate, also known as vitamin B9, facilitates the transfer of methyl groups among molecules, which is crucial for amino acid metabolism and nucleotide synthesis. Adequate maternal folate supplementation has been widely acknowledged for its pivotal role in promoting cell proliferation and preventing neural tube defects. However, in the post-fortification era, there has been a rising concern regarding an excess maternal intake of folic acid (FA), the synthetic form of folate. In this review, we focused on recent advancements in understanding the influence of excess maternal FA intake on offspring. For human studies, we summarized findings from clinical trials investigating the effects of periconceptional FA intake on neurodevelopment and molecular-level changes in offspring. For studies using mouse models, we compiled the impact of high maternal FA supplementation on gene expression and behavioral changes in offspring. In summary, excessive maternal folate intake could potentially have adverse effects on offspring. Overall, we highlighted concerns regarding elevated maternal folate status in the population, providing a comprehensive perspective on the potential adverse effects of excessive maternal FA supplementation on offspring.


Subject(s)
Drug-Related Side Effects and Adverse Reactions , Neural Tube Defects , Animals , Mice , Humans , Dietary Supplements/adverse effects , Folic Acid/therapeutic use , Neural Tube Defects/prevention & control , Family
11.
Adv Sci (Weinh) ; : e2310189, 2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38468446

ABSTRACT

Metal organic framework (MOF) films have attracted abundant attention due to their unique characters compared with MOF particles. But the high-temperature reaction and solvent corrosion limit the preparation of MOF films on fragile substrates, hindering further applications. Fabricating macro-sized continuous free-standing MOF films and transferring them onto fragile substrates are a promising alternative but still challenging. Here, a universal strategy to prepare transferrable macro-sized continuous free-standing MOF films with the assistance of oxide nanomembranes prepared by atomic layer deposition and studied the growth mechanism is developed. The oxide nanomembranes serve not only as reactant, but also as interfacial layer to maintain the integrality of the free-standing structure as the stacked MOF particles are supported by the oxide nanomembrane. The centimeter-scale free-standing MOF films can be transferred onto fragile substrates, and all in one device for glucose sensing is assembled. Due to the strong adsorption toward glucose molecules, the obtained devices exhibit outstanding performance in terms of high sensitivity, low limit of detection, and long durability. This work opens a new window toward the preparation of MOF films and MOF film-based biosensor chip for advantageous applications in post-Moore law period.

12.
mSphere ; 9(3): e0009524, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38411120

ABSTRACT

Genetic editing is a powerful tool for functional characterization of genes in various organisms. With its simplicity and specificity, the CRISPR-Cas9 technology has become a popular editing tool, which introduces site-specific DNA double-strand breaks (DSBs), and then leverages the endogenous repair pathway for DSB repair via homology-directed repair (HDR) or the more error-prone non-homologous end joining (NHEJ) pathways. However, in the Plasmodium parasites, the lack of a typical NHEJ pathway selects for DSB repair through the HDR pathway when a homologous DNA template is available. The AT-rich nature of the Plasmodium genome exacerbates this drawback by making it difficult to clone longer homologous repair DNA templates. To circumvent these challenges, we adopted the hybrid catalytically inactive Cas9 (dCas9)-microbial single-stranded annealing proteins (SSAP) editor to the Plasmodium genome. In Plasmodium yoelii, we demonstrated the use of the dCas9-SSAP, as the cleavage-free gene editor, by targeted gene deletion and gene tagging, even using shorter homologous DNA templates. This dCas9-SSAP method with a shorter DNA template, which did not require DSBs, independent of HDR and NHEJ, would be a great addition to the existing genetic toolbox and could be deployed for the functional characterization of genes in Plasmodium, contributing to improving the ability of the malaria research community in characterizing more than half of genes with unknown functions.IMPORTANCEMalaria caused by Plasmodium parasites infection remains a serious threat to human health, with an estimated 249 million malaria cases and 608,000 deaths worldwide in 2022, according to the latest report from the World Health Organization (WHO). Here, we demonstrated the use of dCas9-single-stranded annealing protein, as the cleavage-free gene editor in Plasmodium yoelii, by targeted deletion and gene tagging, even using shorter homologous DNA templates. This method with a shorter DNA template, which did not require DSBs, independent of HDR and NHEJ, showing the potential significance in greatly improving our ability to elucidate gene functions, would contribute to assisting the malaria research community in deciphering more than half of genes with unknown functions to identify new drug and vaccine targets.


Subject(s)
Malaria , Plasmodium yoelii , Humans , Gene Editing , Plasmodium yoelii/genetics , CRISPR-Cas Systems , DNA
13.
JCI Insight ; 9(6)2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38358805

ABSTRACT

Suppressor of fused (SUFU) is widely regarded as a key negative regulator of the sonic hedgehog (SHH) morphogenic pathway and a known tumor suppressor of medulloblastoma (MB). However, we report here that SUFU expression was markedly increased in 75% of specimens compiled in a tissue array comprising 49 unstratified MBs. The SUFU and GLI1 expression levels in this MB array showed strong positive correlation, which was also identified in a large public data set containing 736 MBs. We further report that increasing Sufu gene dosage in mice caused preaxial polydactyly, which was associated with the expansion of the Gli3 domain in the anterior limb bud and heightened Shh signaling responses during embryonic development. Increasing Sufu gene dosage also led to accelerated cerebellar development and, when combined with ablation of the Shh receptor encoded by Patched1 (Ptch1), promoted MB tumorigenesis. These data reveal multifaceted roles of SUFU in promoting MB tumorigenesis by enhancing SHH signaling. This revelation clarifies potentially counterintuitive clinical observation of high SUFU expression in MBs and may pave way for novel strategies to reduce or reverse MB progression.


Subject(s)
Cerebellar Neoplasms , Medulloblastoma , Polydactyly , Mice , Animals , Medulloblastoma/genetics , Medulloblastoma/pathology , Repressor Proteins/genetics , Repressor Proteins/metabolism , Hedgehog Proteins/genetics , Hedgehog Proteins/metabolism , Cell Transformation, Neoplastic/genetics , Transcription Factors , Cerebellar Neoplasms/genetics , Polydactyly/genetics
14.
Int J Biochem Cell Biol ; 169: 106553, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38417568

ABSTRACT

Given the high concentration of iron in the micro-environment of ovarian endometriosis, it is plausible to hypothesize that ectopic endometrial cells may be more susceptible to undergoing ferroptosis. Manipulation of ferroptosis has been explored as a potential therapeutic strategy to treat related diseases. In this study, we examined the impact on ectopic endometrial stromal cells (EESCs) of iron overload and an inducer of ferroptosis. We found that the iron concentration in the ovarian endometriosis was much higher than control samples. Treatment of cultured EESCs with ferric ammonium citrate (FAC) increase the sensitivity to undergo ferroptosis. By analyzing the RNA-seq results, it was discovered that zeste 2 polycomb repressive complex 2 subunit (EZH2) was significantly downregulated in ferroptosis induced EESCs. Moreover, overexpression of EZH2 effectively prevented the induction of ferroptosis. In addition, the activity or expression of EZH2 is directly and specifically inhibited by the methyltransferase inhibitor GSK343, which raises the sensitivity of stromal cells to ferroptosis. Taken together, our findings revealed that EZH2 act as a suppressor in the induced cell ferroptosis through a PRC2-independent methyltransferase mechanism. Therefore, blocking EZH2 expression and inducing ferroptosis may be effective treatment approaches for ovarian endometriosis.


Subject(s)
Endometriosis , Ferroptosis , Iron Overload , Ovarian Neoplasms , Female , Humans , Enhancer of Zeste Homolog 2 Protein/genetics , Enhancer of Zeste Homolog 2 Protein/metabolism , Endometriosis/metabolism , Polycomb Repressive Complex 2/metabolism , Ovarian Neoplasms/metabolism , Iron Overload/metabolism , Stromal Cells/metabolism , Iron/metabolism , Tumor Microenvironment
15.
Cell Prolif ; : e13620, 2024 Feb 24.
Article in English | MEDLINE | ID: mdl-38400824

ABSTRACT

Irreversible damage to hair cells (HCs) in the cochlea leads to hearing loss. Cochlear supporting cells (SCs) in the murine cochlea have the potential to differentiate into HCs. Neuron membrane glycoprotein M6B (Gpm6b) as a four-transmembrane protein is a potential regulator of HC regeneration according to our previous research. In this study, we found that AAV-ie-mediated Gpm6b overexpression promoted SC-derived organoid expansion. Enhanced Gpm6b prevented the normal decrease in SC plasticity as the cochlea develops by supporting cells re-entry cell cycle and facilitating the SC-to-HC transformation. Also, overexpression of Gpm6b in the organ of Corti through the round window membrane injection facilitated the trans-differentiation of Lgr5+ SCs into HCs. In conclusion, our results suggest that Gpm6b overexpression promotes HC regeneration and highlights a promising target for hearing repair using the inner ear stem cells combined with AAV.

16.
Sci Rep ; 14(1): 3112, 2024 02 07.
Article in English | MEDLINE | ID: mdl-38326407

ABSTRACT

Corticotropin-releasing hormone-binding protein (CRHBP) is involved in many physiological processes. However, it is still unclear what role CRHBP has in tumor immunity and prognosis prediction. Using databases such as the Cancer Genome Atlas (TCGA), Gene Expression Omnibus (GEO), Tumor Protein Database, Timer Database, and Gene Expression Profiling Interactive Analysis (GEPIA), we evaluated the potential role of CRHBP in diverse cancers. Further research looked into the relationships between CRHBP and tumor survival prognosis, immune infiltration, immune checkpoint (ICP) indicators, tumor mutation burden (TMB), microsatellite instability (MSI), mismatch repair (MMR), DNA methylation, tumor microenvironment (TME), and drug responsiveness. The anticancer effect of CRHBP in liver hepatocellular carcinoma (LIHC) was shown by Western blotting, EdU staining, JC-1 staining, transwell test, and wound healing assays. CRHBP expression is significantly low in the majority of tumor types and is associated with survival prognosis, ICP markers, TMB, and microsatellite instability (MSI). The expression of CRHBP was found to be substantially related to the quantity of six immune cell types, as well as the interstitial and immunological scores, showing that CRHBP has a substantial impact in the TME. We also noticed a link between the IC50 of a number of anticancer medicines and the degree of CRHBP expression. CRHBP-related signaling pathways were discovered using functional enrichment. Cox regression analysis showed that CRHBP expression was an independent prognostic factor for LIHC. CRHBP has a tumor suppressor function in LIHC, according to cell and molecular biology trials. CRHBP has a significant impact on tumor immunity, treatment, and prognosis, and has the potential as a cancer treatment target and prognostic indicator.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/genetics , Microsatellite Instability , Prognosis , Databases, Protein , Liver Neoplasms/drug therapy , Liver Neoplasms/genetics , Tumor Microenvironment/genetics
17.
Angew Chem Int Ed Engl ; 63(15): e202400577, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38284909

ABSTRACT

Atomically dispersed metal-nitrogen-carbon (M-N-C) catalysts have exhibited encouraging oxygen reduction reaction (ORR) activity. Nevertheless, the insufficient long-term stability remains a widespread concern owing to the inevitable 2-electron byproducts, H2O2. Here, we construct Co-N-Cr cross-interfacial electron bridges (CIEBs) via the interfacial electronic coupling between Cr2O3 and Co-N-C, breaking the activity-stability trade-off. The partially occupied Cr 3d-orbitals of Co-N-Cr CIEBs induce the electron rearrangement of CoN4 sites, lowering the Co-OOH* antibonding orbital occupancy and accelerating the adsorption of intermediates. Consequently, the Co-N-Cr CIEBs suppress the two-electron ORR process and approach the apex of Sabatier volcano plot for four-electron pathway simultaneously. As a proof-of-concept, the Co-N-Cr CIEBs is synthesized by the molten salt template method, exhibiting dominant 4-electron selectively and extremely low H2O2 yield confirmed by Damjanovic kinetic analysis. The Co-N-Cr CIEBs demonstrates impressive bifunctional oxygen catalytic activity (▵E=0.70 V) and breakthrough durability including 100 % current retention after 10 h continuous operation and cycling performance over 1500 h for Zn-air battery. The hybrid interfacial configuration and the understanding of the electronic coupling mechanism reported here could shed new light on the design of superdurable M-N-C catalysts.

18.
Adv Sci (Weinh) ; 11(11): e2306788, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38189623

ABSTRACT

Mutations in OTOFERLIN (OTOF) lead to the autosomal recessive deafness 9 (DFNB9). The efficacy of adeno-associated virus (AAV)-mediated OTOF gene replacement therapy is extensively validated in Otof-deficient mice. However, the clinical safety and efficacy of AAV-OTOF is not reported. Here, AAV-OTOF is generated using good manufacturing practice and validated its efficacy and safety in mouse and non-human primates in order to determine the optimal injection dose, volume, and administration route for clinical trials. Subsequently, AAV-OTOF is delivered into one cochlea of a 5-year-old deaf patient and into the bilateral cochleae of an 8-year-old deaf patient with OTOF mutations. Obvious hearing improvement is detected by the auditory brainstem response (ABR) and the pure-tone audiometry (PTA) in these two patients. Hearing in the injected ear of the 5-year-old patient can be restored to the normal range at 1 month after AAV-OTOF injection, while the 8-year-old patient can hear the conversational sounds. Most importantly, the 5-year-old patient can hear and recognize speech only through the AAV-OTOF-injected ear. This study is the first to demonstrate the safety and efficacy of AAV-OTOF in patients, expands and optimizes current OTOF-related gene therapy and provides valuable information for further application of gene therapies for deafness.


Subject(s)
Deafness , Hearing Loss, Sensorineural , Humans , Animals , Mice , Dependovirus/genetics , Hearing Loss, Sensorineural/genetics , Hearing Loss, Sensorineural/therapy , Hearing , Deafness/genetics , Deafness/therapy , Genetic Therapy
19.
Phytomedicine ; 125: 155353, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38241918

ABSTRACT

BACKGROUND: Acute liver injury (ALI) is a frequent fatal liver disease with a high mortality. Calenduloside E (CE) is a pentacyclic triterpenoid derived from Achyranthes bidentata Blume. It has been found that liver injury is associated with mitochondrial dysfunction, and activation of the AMPK-SIRT3 signaling pathway protects the mitochondrial function to play a role in resistance to the disease. However, whether CE is protective against ALI through the AMPK-SIRT3 signaling pathway is unclear. PURPOSE: To clarify the influences of Calenduloside E (CE) isolated from Achyranthes bidentata Blume on LPS/D-GalN-induced Acute liver injury (ALI). METHODS: A mouse model of ALI was developed, intraperitoneal injection of 10 µg/kg LPS and 700 mg/kg D-GalN, histopathological, oxidative stress, and immune inflammation of the mice were monitored. The mechanism of CE influencing liver injury was investigated by examining the gut microbiota, mitochondrial dysfunction, and the AMPK-SIRT3 signaling pathway. The antagonistic effects of specific AMPK and SIRT3 blocker, as well as AMPKα1, AMPKα2, SIRT3 transfection-mediated silencing were investigated to confirm the role of the AMPK-SIRT3 signaling pathway in this process. RESULTS: CE relieved liver pathological damage of mice and led to reduced oxidative stress and immune inflammation in mice, affected the balance of gut microbiota in mice with liver injury, as well as energy metabolism, and regulated mRNA and protein expressions of AMPK-SIRT3 signaling pathway. In addition, in vitro studies showed that CE relieved mitochondrial respiratory and protein expressions of AMPK-SIRT3 signaling pathway in LPS/D-GalN-induced AML12 and LX2 cells, and such effect was blocked by AMPK and SIRT3 inhibitors. Furthermore, silencing of AMPKα1, AMPKα2, and SIRT3 blocked the effects of CE. Overall, the influences of CE on mice with liver injury is tuned by the AMPK-SIRT3 signaling pathway. CONCLUSION: CE mediates mitochondrial function and eventually regulate energy metabolism by regulating the AMPK-SIRT3 signaling pathway. The results of this study provide molecular evidences for application of CE in treatment of ALI and provide references to the drug development for ALI.


Subject(s)
Achyranthes , Mitochondrial Diseases , Oleanolic Acid/analogs & derivatives , Saponins , Sirtuin 3 , Sirtuin 3/metabolism , Achyranthes/metabolism , AMP-Activated Protein Kinases/metabolism , Lipopolysaccharides/pharmacology , Signal Transduction , Liver/metabolism , Inflammation
20.
ACS Chem Biol ; 19(1): 208-216, 2024 Jan 19.
Article in English | MEDLINE | ID: mdl-38194356

ABSTRACT

The simultaneous evolution of multiple aptamers can drastically increase the speed of aptamer discovery. Most previous studies used the same concentration for different targets, leading to the dominance of the libraries by one or a few aptamers and a low success rate. To foster the best aptamers to grow independently in the sequence space, it is important to (1) use low target concentrations close to their dissociation constants and (2) stop at an early round before any sequence starts to dominate. In this study, we demonstrate this affinity-guided selection concept using the capture-SELEX method to isolate aptamers for four important purines: guanine (5 µM), xanthine (50 µM), hypoxanthine (10 µM), and adenine (10 µM). The round 9 library was split, and in round 10, the four targets were individually used to elute the binding sequences. Using thioflavin T fluorescence spectroscopy and isothermal titration calorimetry, we confirmed highly selective aptamers for xanthine, guanine, and adenine. These aptamers have Kd values below 1 µM and around 100-fold selectivity against most competing analytes, and they compare favorably with existing RNA aptamers and riboswitches. A separate selection was performed using hypoxanthine alone, and no selective aptamer was achieved, even with negative selection, explaining the lack of its aptamer in our mixed selection. This affinity-guided multiplex SELEX study offers fundamental insights into aptamer selection and provides high-quality aptamers for three important purines.


Subject(s)
Adenine , Aptamers, Nucleotide , Xanthine , Hypoxanthine , Guanine , Aptamers, Nucleotide/chemistry , Purines
SELECTION OF CITATIONS
SEARCH DETAIL
...