Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Arch Biochem Biophys ; 752: 109891, 2024 02.
Article in English | MEDLINE | ID: mdl-38218360

ABSTRACT

Endometrial cancer (EC) is a common gynecological malignancy, and advanced-stage or recurrent EC is associated with a high mortality rate owing to the ineffectiveness of currently available treatments. FK506-binding protein 38 (FKBP38) is a member of the immunophilin family and inhibits melanoma and breast cancer cell metastasis. However, the functions of FKBP38 and its potential mechanism in EC remain unclear. Herein, we analyzed the expression levels of FKBP38 in EC cells and found that the FKBP38 expression was high in Ishikawa cells, and low in AN3CA cells, traditionally considered a low grade and a high grade cell line, respectively, in pathology classification. Moreover, FKBP38 inhibited cell proliferation, migration and invasion in EC cells, FKBP38 knockdown significantly promoted tumor growth of Ishikawa cells in a subcutaneous xenograft model and increased the number of lung metastases of Hec-1-A cells in a metastatic mouse model. Furthermore, FKBP38 suppressed several target proteins of epithelial-to-mesenchymal transition (EMT) and reduced the phosphorylation of ribosomal S6 protein (S6), eukaryotic initiation factor 4E-binding protein 1 (4EBP-1), indicating the potent inhibition of the mammalian target of rapamycin (mTOR) pathway. Meanwhile, the inhibition of mTOR neutralized the elevation of EC cell proliferation, migration and invasion after FKBP38 knockdown. In summary, FKBP38 would exert a tumor-suppressing role by modulating the mTOR pathway. Our results indicate that FKBP38 may be considered as a factor of EC metastasis and a new target for EC therapeutic intervention.


Subject(s)
Endometrial Neoplasms , Tacrolimus Binding Proteins , Animals , Female , Humans , Mice , Cell Line, Tumor , Cell Movement , Cell Proliferation , Endometrial Neoplasms/metabolism , Mammals/metabolism , Signal Transduction/physiology , Tacrolimus Binding Proteins/metabolism , TOR Serine-Threonine Kinases/metabolism
3.
Free Radic Biol Med ; 201: 14-25, 2023 05 20.
Article in English | MEDLINE | ID: mdl-36906190

ABSTRACT

Cisplatin is a chemotherapy medication used to treat a wide range of cancers. A common side effect of cisplatin is myelosuppression. Research suggests that oxidative damages are strongly and consistently related to myelosuppression during cisplatin treatment. ω-3 polyunsaturated fatty acids (PUFAs) can enhance the antioxidant capacity of cells. Herein, we investigated the protective benefit of endogenous ω-3 PUFAs on cisplatin-induced myelosuppression and the underlying signaling pathways using a transgenic mfat-1 mouse model. The expression of mfat-1 gene can increase endogenous levels of ω-3 PUFAs by enzymatically converting ω-6 PUFAs. Cisplatin treatment reduced peripheral blood cells and bone marrow nucleated cells, induced DNA damage, increased the production of reactive oxygen species, and activated p53-mediated apoptosis in bone marrow (BM) cells of wild-type mice. In the transgenics, the elevated tissue ω-3 PUFAs rendered a robust preventative effect on these cisplatin-induced damages. Importantly, we identified that the activation of NRF2 by ω-3 PUFAs could trigger an antioxidant response and inhibit p53-mediated apoptosis by increasing the expression of MDM2 in BM cells. Thus, endogenous ω-3 PUFAs enrichment can strongly prevent cisplatin-induced myelosuppression by inhibiting oxidative damage and regulating the NRF2-MDM2-p53 signaling pathway. Elevation of tissue ω-3 PUFAs may represent a promising treatment strategy to prevent the side effects of cisplatin.


Subject(s)
Cisplatin , Fatty Acids, Omega-3 , Mice , Animals , Cisplatin/toxicity , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Antioxidants/pharmacology , Fatty Acids, Omega-3/pharmacology , Fatty Acids, Omega-3/metabolism , Mice, Transgenic , Signal Transduction
4.
Cancers (Basel) ; 14(23)2022 Dec 05.
Article in English | MEDLINE | ID: mdl-36497484

ABSTRACT

NPC is a type of malignant tumor with a high risk of local invasion and early distant metastasis. Resistin is an inflammatory cytokine that is predominantly produced from the immunocytes in humans. Accumulating evidence has suggested a clinical association of circulating resistin with the risk of tumorigenesis and a relationship between blood resistin levels and the risk of cancer metastasis. In this study, we explored the blood levels and the role of resistin in NPC. High resistin levels in NPC patients were positively associated with lymph node metastasis, and resistin promoted the migration and invasion of NPC cells in vitro. These findings were also replicated in a mouse model of NPC tumor metastasis. We identified TLR4 as a functional receptor in mediating the pro-migratory effects of resistin in NPC cells. Furthermore, p38 MAPK and NF-κB were intracellular effectors that mediated resistin-induced EMT. Taken together, our results suggest that resistin promotes NPC metastasis by activating the TLR4/p38 MAPK/NF-κB signaling pathways.

5.
Int J Mol Sci ; 23(21)2022 Oct 22.
Article in English | MEDLINE | ID: mdl-36361525

ABSTRACT

Adiponectin is an adipocytokine with anti-inflammatory and anticancer properties. Our previous study has shown that blood adiponectin levels were inversely correlated to the risk of nasopharyngeal carcinoma (NPC), and that adiponectin could directly suppress the proliferation of NPC cells. However, the effect of adiponectin on NPC metastasis remains unknown. Here, we revealed in clinical studies that serum adiponectin level was inversely correlated with tumor stage, recurrence, and metastasis in NPC patients, and that low serum adiponectin level also correlates with poor metastasis-free survival. Coculture with recombinant adiponectin suppressed the migration and invasion of NPC cells as well as epithelial-mesenchymal transition (EMT). In addition, recombinant adiponectin dampened the activation of NF-κB and STAT3 signaling pathways induced by adipocyte-derived proinflammatory factors such as leptin, IL-6, and TNF-α. Pharmacological activation of adiponectin receptor through its specific agonist, AdipoRon, largely stalled the metastasis of NPC cells. Taken together, these findings demonstrated that adiponectin could not only regulate metabolism and inhibit cancer growth, but also suppress the metastasis of NPC. Pharmacological activation of adiponectin receptor may be a promising therapeutic strategy to stall NPC metastasis and extend patients' survival.


Subject(s)
Carcinoma , Nasopharyngeal Neoplasms , Humans , Nasopharyngeal Carcinoma/genetics , NF-kappa B/metabolism , Nasopharyngeal Neoplasms/pathology , Adiponectin/metabolism , Receptors, Adiponectin/metabolism , Epithelial-Mesenchymal Transition , Cell Line, Tumor , Cell Movement , Gene Expression Regulation, Neoplastic , Neoplasm Metastasis , Neoplasm Invasiveness , STAT3 Transcription Factor/metabolism
6.
J Transl Med ; 20(1): 89, 2022 02 14.
Article in English | MEDLINE | ID: mdl-35164782

ABSTRACT

BACKGROUND: Adiponectin is an adipocyte-secreted cytokine that enhances insulin sensitivity and attenuates inflammation. Although circulating adiponectin level is often inversely associated with several malignancies, its role in the development of nasopharyngeal carcinoma (NPC) remains unclear. Here, we investigated the clinical association between circulating adiponectin level and NPC, and examined the impact of adiponectin, as well as the underlying mechanisms, on NPC growth both in vitro and in vivo. METHODS: The association between circulating adiponectin level and the risk of developing NPC was assessed in two different cohorts, including a hospital-based case-control study with 152 cases and 132 controls, and a nested case-control study with 71 cases and 142 controls within a community-based NPC screening cohort. Tumor xenograft model, cell proliferation and cycle assays were applied to confirm the effects of adiponectin on NPC growth in cultured cells and in xenograft models. We also investigated the underlying signaling mechanisms with various specific pharmacological inhibitors and biochemistry analysis. RESULTS: High adiponectin levels were associated with a monotonic decreased trend of NPC risk among males in both the hospital-based case-control study and a nested case-control study. In vitro, recombinant human full-length adiponectin significantly inhibited NPC cell growth and arrested cell cycle, which were dependent on AMPK signaling pathway. The growth of xenograft of NPC tumor was sharply accelerated in the nude mice carrying genetic adiponectin deficiency. An adiponectin receptor agonist, AdipoRon, displayed strong anti-tumor activity in human xenograft models. CONCLUSIONS: These findings demonstrated for the first time that circulating adiponectin is not only inversely associated with NPC, but also controls the development of NPC via AMPK signaling pathway. Stimulation of adiponectin function may become a novel therapeutic modality for NPC.


Subject(s)
AMP-Activated Protein Kinases , Nasopharyngeal Neoplasms , AMP-Activated Protein Kinases/metabolism , Adiponectin/pharmacology , Animals , Case-Control Studies , Cell Line, Tumor , Cell Proliferation , Humans , Male , Mice , Mice, Nude , Nasopharyngeal Carcinoma/drug therapy , Nasopharyngeal Neoplasms/genetics , Signal Transduction , Xenograft Model Antitumor Assays
7.
IEEE Trans Image Process ; 30: 8265-8277, 2021.
Article in English | MEDLINE | ID: mdl-34559652

ABSTRACT

This paper focuses on tackling the problem of temporal language localization in videos, which aims to identify the start and end points of a moment described by a natural language sentence in an untrimmed video. However, it is non-trivial since it requires not only the comprehensive understanding of the video and sentence query, but also the accurate semantic correspondence capture between them. Existing efforts are mainly centered on exploring the sequential relation among video clips and query words to reason the video and sentence query, neglecting the other intra-modal relations (e.g., semantic similarity among video clips and syntactic dependency among the query words). Towards this end, in this work, we propose a Multi-modal Interaction Graph Convolutional Network (MIGCN), which jointly explores the complex intra-modal relations and inter-modal interactions residing in the video and sentence query to facilitate the understanding and semantic correspondence capture of the video and sentence query. In addition, we devise an adaptive context-aware localization method, where the context information is taken into the candidate moments and the multi-scale fully connected layers are designed to rank and adjust the boundary of the generated coarse candidate moments with different lengths. Extensive experiments on Charades-STA and ActivityNet datasets demonstrate the promising performance and superior efficiency of our model.

8.
Exp Physiol ; 106(4): 983-993, 2021 04.
Article in English | MEDLINE | ID: mdl-33605486

ABSTRACT

NEW FINDINGS: What is the central question of this study? What is the protective benefit of n-3 polyunsaturated fatty acids (PUFAs) on liver fibrosis and what are the relevant signalling pathways in a transgenic mouse model overexpressing the mfat-1 enzyme? What is the main finding and its importance? n-3 PUFA elevation strongly prevented carbon tetrachloride (CCl4 )-induced hepatic damage and inhibited the activation of hepatic stellate cells. n-3 PUFAs suppressed CCl4 -induced activation of mTOR, elevated Bcl-2 expression, and reduced Bax level, suggesting that n-3 PUFAs can render strong protective effects against liver fibrosis and point to the potential of mfat-1 gene therapy as a treatment modality. ABSTRACT: Liver fibrosis is a reversible wound healing response with excessive accumulation of extracellular matrix proteins. It is a globally prevalent disease with ultimately severe pathological consequences. However, very few current clinical therapeutic options are available. Nutritional addition of n-3 polyunsaturated fatty acids (PUFAs) can delay and lessen the development of liver fibrosis. Herein, this study examined the protective benefit of n-3 PUFAs on liver fibrosis and the relevant signalling pathways using a transgenic mouse model overexpressing the mfat-1 enzyme that converts n-6 to n-3 PUFAs. Male C57BL/6 wild-type and mfat-1 transgenic mice were administered carbon tetrachloride (CCl4 ) or control corn oil by intraperitoneal injection. Blood alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels were subsequently measured. CCl4 -induced hepatic damage and fibrosis were assessed using haematoxylin-eosin and Masson's trichrome staining. Western blot assays were used to detect and quantify fibrosis-related proteins and mechanistic target of rapamycin (mTOR) and B-cell lymphoma 2 (Bcl-2)/Bcl-2-associated X protein (Bax) signalling components. The direct effect of docosahexaenoic acid (DHA) on primary hepatic stellate cells (HSCs) was also investigated in a co-culture experiment. n-3 PUFAs, as a result of mfat-1 activity, had a strong protective effect on liver fibrosis. The elevation of ALT and AST induced by CCl4 was significantly lessened in the mfat-1 mice. Histological determination revealed the protective effects of n-3 PUFAs on liver inflammation and collagen deposition. Co-incubation with DHA reduced the expression of profibrogenic factors in the primary HSCs. Moreover, mfat-1 transgenic mice showed significant reduction of proteins that are involved in mTOR and Bcl-2/Bax signalling pathways. Collectively, these results suggest that n-3 PUFA elevation strongly prevents CCl4 -induced hepatic damage by directly inhibiting the activation of HSCs and regulating the basal activity of the mTOR and Bcl-2/Bax signalling pathways. Gene therapy applying mfat-1 and elevating n-3 PUFAs represents a promising treatment strategy to prevent liver fibrosis.


Subject(s)
Carbon Tetrachloride , Fatty Acids, Omega-3 , Animals , Carbon Tetrachloride/adverse effects , Carbon Tetrachloride/metabolism , Fatty Acids, Omega-3/metabolism , Fatty Acids, Omega-3/pharmacology , Liver/metabolism , Liver Cirrhosis/chemically induced , Liver Cirrhosis/drug therapy , Liver Cirrhosis/prevention & control , Male , Mice , Mice, Inbred C57BL , TOR Serine-Threonine Kinases/metabolism , bcl-2-Associated X Protein/metabolism
9.
Front Immunol ; 10: 2241, 2019.
Article in English | MEDLINE | ID: mdl-31611873

ABSTRACT

The recognition of ω-3 polyunsaturated acids (PUFAs) as essential fatty acids to normal growth and health was realized more than 80 years ago. However, the awareness of the long-term nutritional intake of ω-3 PUFAs in lowering the risk of a variety of chronic human diseases has grown exponentially only since the 1980s (1, 2). Despite the overwhelming epidemiological evidence, many attempts of using fish-oil supplementation to intervene human diseases have generated conflicting and often ambiguous outcomes; null or weak supporting conclusions were sometimes derived in the subsequent META analysis. Different dosages, as well as the sources of fish-oil, may have contributed to the conflicting outcomes of intervention carried out at different clinics. However, over the past decade, mounting evidence generated from genetic mouse models and clinical studies has shed new light on the functions and the underlying mechanisms of ω-3 PUFAs and their metabolites in the prevention and treatment of rheumatoid arthritis, systemic lupus erythematosus (SLE), multiple sclerosis, and type 1 diabetes. In this review, we have summarized the current understanding of the effects as well as the underlying mechanisms of ω-3 PUFAs on autoimmune diseases.


Subject(s)
Autoimmune Diseases/drug therapy , Dietary Supplements , Fatty Acids, Omega-3/therapeutic use , Fatty Acids, Unsaturated/therapeutic use , Animals , Arthritis, Rheumatoid/drug therapy , Diabetes Mellitus, Type 1/drug therapy , Fatty Acids, Omega-3/administration & dosage , Fatty Acids, Unsaturated/administration & dosage , Humans , Lupus Erythematosus, Systemic/drug therapy , Multiple Sclerosis/drug therapy
10.
PeerJ ; 7: e6352, 2019.
Article in English | MEDLINE | ID: mdl-30697495

ABSTRACT

ZBTB38 belongs to the zinc finger protein family and contains the typical BTB domains. As a transcription factor, ZBTB38 is involved in cell regulation, proliferation and apoptosis, whereas, functional deficiency of ZBTB38 induces the human neuroblastoma (NB) cell death potentially. To have some insight into the role of ZBTB38 in NB development, high throughput RNA sequencing was performed using the human NB cell line SH-SY5Y with the deletion of ZBTB38. In the present study, 2,438 differentially expressed genes (DEGs) in ZBTB38-/- SH-SY5Y cells were obtained, 83.5% of which was down-regulated. Functional annotation of the DEGs in the Kyoto Encyclopedia of Genes and Genomes database revealed that most of the identified genes were enriched in the neurotrophin TRK receptor signaling pathway, including PI3K/Akt and MAPK signaling pathway. we also observed that ZBTB38 affects expression of CDK4/6, Cyclin E, MDM2, ATM, ATR, PTEN, Gadd45, and PIGs in the p53 signaling pathway. In addition, ZBTB38 knockdown significantly suppresses the expression of autophagy-related key genes including PIK3C2A and RB1CC1. The present meeting provides evidence to molecular mechanism of ZBTB38 modulating NB development and targeted anti-tumor therapies.

11.
Theriogenology ; 135: 204-212, 2019 Sep 01.
Article in English | MEDLINE | ID: mdl-30522699

ABSTRACT

The egg production of poultry depends on follicular development and selection. Nonetheless, the mechanism underlying the priority of selecting of hierarchical follicles is completely unknown. SMAD9 is one of the important transcription factors in the BMP/SMAD pathway and is involved in goose follicular initiation. To identify its potential role in determination of the goose follicle hierarchy, we used BMP type I receptor inhibitor LDN-193189 both in vivo and in vitro and found that SMAD9 mRNA expression decreased in the presence of LDN-193189. While the level of SMAD9 mRNA decreased after treatment with LDN-193189, we found that the egg production (7.08 eggs per bird per year) of the animals increased, estradiol (E2) levels significantly increased, but the levels of progesterone (P4) remained unchanged. We also detected a significant increase in luteinizing hormone receptor (LHR) mRNA expression, but no change in follicle-stimulating hormone receptor (FSHR) mRNA amounts. The in vitro experimental results indicated that SMAD9 knockdown by RNA interference noticeably reduced E2 and P4 biosynthesis and FSHR and LHR mRNA expression in goose granulosa cells. Chromatin immunoprecipitation assay of goose granulosa cells revealed that phospho-SMAD9 bound to the LHR promoter and possibly regulated its transcriptional activity. These findings revealed that SMAD9 is differentially expressed in goose follicles, and acts as a key player in the control over goose follicular selection.


Subject(s)
Anseriformes/physiology , Ovarian Follicle/physiology , RNA, Messenger/metabolism , Receptors, LH/metabolism , Smad8 Protein/genetics , Animals , Cell Proliferation , Down-Regulation , Estradiol/metabolism , Female , Gene Expression Regulation , Progesterone/metabolism , RNA, Messenger/genetics , Receptors, LH/genetics
12.
Cell Stress Chaperones ; 23(4): 551-560, 2018 07.
Article in English | MEDLINE | ID: mdl-29151236

ABSTRACT

Spinal cord injury (SCI) is generally divided into primary and secondary injuries, and apoptosis is an important event of the secondary injury. As an endogenous bile acid and recognized endoplasmic reticulum (ER) stress inhibitor, tauroursodeoxycholic acid (TUDCA) administration has been reported to have a potentially therapeutic effect on neurodegenerative diseases, but its real mechanism is still unclear. In this study, we evaluated whether TUDCA could alleviate traumatic damage of the spinal cord and improve locomotion function in a mouse model of SCI. Traumatic SCI mice were intraperitoneally injected with TUDCA, and the effects were evaluated based on motor function assessment, histopathology, apoptosis detection, qRT-PCR, and western blot at different time periods. TUDCA administration can improve motor function and reduce secondary injury and lesion area after SCI. Furthermore, the apoptotic ratios were significantly reduced; Grp78, Erdj4, and CHOP were attenuated by the treatment. Unexpectedly, the levels of CIBZ, a novel therapeutic target for SCI, were specifically up-regulated. Taken together, it is suggested that TUDCA effectively suppressed ER stress through targeted up-regulation of CIBZ. This study also provides a new strategy for relieving secondary damage by inhibiting apoptosis in the early treatment of spinal cord injury.


Subject(s)
Repressor Proteins/genetics , Spinal Cord Injuries/drug therapy , Spinal Cord Injuries/genetics , Taurochenodeoxycholic Acid/therapeutic use , Up-Regulation/genetics , Animals , Apoptosis/drug effects , Endoplasmic Reticulum Chaperone BiP , Endoplasmic Reticulum Stress/drug effects , Male , Mice , Models, Biological , Motor Activity/drug effects , Neurons/drug effects , Neurons/metabolism , Neurons/pathology , Recovery of Function/drug effects , Repressor Proteins/metabolism , Spinal Cord Injuries/pathology , Spinal Cord Injuries/physiopathology , Taurochenodeoxycholic Acid/pharmacology
13.
Oncotarget ; 8(28): 45356-45366, 2017 Jul 11.
Article in English | MEDLINE | ID: mdl-28514761

ABSTRACT

Spinal cord injury (SCI) is currently incurable since treatments applied to clinic are limited to minimizing secondary complications and the mechanisms of injury-induced spinal cord damage are poorly understood. Zbtb38, also called CIBZ, is highly expressed in spinal cord and it functions as a negative regulator in SCI-induced apoptosis. We show here that Zbtb38 is downregulated under endoplasmic reticulum (ER) stress, which promotes ER stress-associated apoptosis in human bone marrow neuroblastoma cells. In the traumatic SCI mice, ER stress presented in injured spinal cord induced repression of Zbtb38 expression and triggered Zbtb38-mediated apoptosis. ChIP-QPCR analysis revealed that ATF4, an ER-stress inducible transcription factor, directly activated Zbtb38 transcription by binding to the Zbtb38 promoter. However, this binding was significantly reduced following SCI, leading to a sharp decrease in Zbtb38 expression. Restoring Zbtb38 function in injured spinal cord by injection of lentivirus containing Zbtb38 into SCI mice, significantly alleviated secondary damage of spinal cord with decreased ER stress-associated apoptosis and partially recovered spinal cord functions. These findings demonstrate that restoration of Zbtb38 expression can reduce secondary tissue damage after SCI, and suggest that a therapeutic strategy for targeting Zbtb38 may promote functional recovery of spinal cord for patients with SCI.


Subject(s)
Repressor Proteins/metabolism , Spinal Cord Injuries/metabolism , Activating Transcription Factor 4/metabolism , Animals , Apoptosis/genetics , Bone Marrow Cells , Disease Models, Animal , Endoplasmic Reticulum Stress/genetics , Gene Expression Regulation , Humans , Male , Mice , Models, Biological , Promoter Regions, Genetic , Protein Binding , Recovery of Function , Repressor Proteins/genetics , Spinal Cord Injuries/etiology , Spinal Cord Injuries/pathology
15.
PLoS One ; 10(8): e0136297, 2015.
Article in English | MEDLINE | ID: mdl-26295156

ABSTRACT

The family Accipitridae is one of the largest groups of non-passerine birds, including 68 genera and 243 species globally distributed. In the present study, we determined the complete mitochondrial sequences of two species of accipitrid, namely Aquila fasciata and Buteo lagopus, and conducted a comparative mitogenome analysis across the family. The mitogenome length of A. fasciata and B. lagopus are 18,513 and 18,559 bp with an A + T content of 54.2% and 55.0%, respectively. For both the two accipitrid birds mtDNAs, obvious positive AT-skew and negative GC-skew biases were detected for all 12 PCGs encoded by the H strand, whereas the reverse was found in MT-ND6 encoded by the L strand. One extra nucleotide'C'is present at the position 174 of MT-ND3 gene of A. fasciata, which is not observed at that of B. lagopus. Six conserved sequence boxes in the Domain II, named boxes F, E, D, C, CSBa, and CSBb, respectively, were recognized in the CRs of A. fasciata and B. lagopus. Rates and patterns of mitochondrial gene evolution within Accipitridae were also estimated. The highest dN/dS was detected for the MT-ATP8 gene (0.32493) among Accipitridae, while the lowest for the MT-CO1 gene (0.01415). Mitophylogenetic analysis supported the robust monophyly of Accipitriformes, and Cathartidae was basal to the balance of the order. Moreover, we performed phylogenetic analyses using two other data sets (two mitochondrial loci, and combined nuclear and mitochondrial loci). Our results indicate that the subfamily Aquilinae and all currently polytypic genera of this subfamily are monophyletic. These two novel mtDNA data will be useful in refining the phylogenetic relationships and evolutionary processes of Accipitriformes.


Subject(s)
DNA, Mitochondrial/genetics , Falconiformes/genetics , Genome, Mitochondrial , Animals , Base Composition , Base Sequence , Biological Evolution , Falconiformes/classification , Genetic Variation , Mitochondria/genetics , Molecular Sequence Data , Phylogeny , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL
...