Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Article in English | MEDLINE | ID: mdl-38656108

ABSTRACT

Topological insulators (TIs) with spin-momentum-locked surface states and considerable spin-to-charge conversion (SCC) efficiency are ideal substitutes for the nonmagnetic layer in the traditional ferromagnetic/nonmagnetic (FM/NM) spintronic terahertz (THz) emitters. Here, the TI/ferrimagnetic structure as an effective polarization tunable THz source is verified by terahertz emission spectroscopy. The emitted THz electric field can be separated into two THz components utilizing their opposite symmetry on pump polarization and the magnetic field. TI not only emits a THz electric field via the linear photogalvanic effect (LPGE) but also serves as the medium of SCC via the inverse Edelstein effect (IEE) in the heterostructure. In addition, the amplitude and polarity of the SCC component can be efficiently manipulated by temperature in our ferrimagnetic TbFeCo layer compared with Co or Fe. Once these two THz components are delicately set orthogonally, an elliptical THz wave is generated by the intrinsic phase difference at the THz frequency range. The feasible control of its polarization and chirality is demonstrated by three means: pump polarization, magnetic field, and temperature. These appealing observations may pave the way for the development of elliptical THz wave emitters and polarization-sensitive THz spectroscopy.

2.
Article in English | MEDLINE | ID: mdl-37883114

ABSTRACT

Spintronic terahertz (THz) emitters based on synthetic antiferromagnets (SAFs) of FM1/Ru/FM2 (FM: ferromagnet) have shown great potential for achieving coherent superposition and significant THz power enhancement due to antiparallel magnetization alignment. However, key issues regarding the effects of interlayer exchange coupling and net magnetization on THz emissions remain unclear, which will inevitably hinder the performance improvement and practical application of THz devices. In this work, we have investigated the femtosecond laser-induced THz emission in Pt (3)/CoFe (3)/Ru (tRu = 0-3.5)/CoFe (tCoFe = 1.5-10)/Pt (3) (in units of nm) films with compensated and uncompensated magnetic moments. Antiferromagnetic (AF) coupling occurs in the Ru thickness ranges of 0.2-1.1 and 1.9-2.3 nm, with the first peak (tRu = 0.4 nm) of the AF coupling field (Hex) significantly higher than that of the second peak (2.0 nm). Rather high THz amplitude is found for the samples with strong AF coupling. Nevertheless, despite the same remanence ratio of zero, the THz amplitude for the symmetric SAF films declines significantly as the tRu decreases from 0.8 to 0.4 nm, which is mainly ascribed to the noncolinear magnetization vectors due to the increased biquadratic coupling term. Specifically, we demonstrate that an asymmetric SAF structure with a dominant FM layer is more favored than the completely compensated one, which could generate significantly enhanced THz electric field with well-controlled polarity and intensity. In addition, as the temperature decreases, the THz emission intensity increases for the SAF samples of tRu = 0.9 nm with negligible biquadratic coupling, which is contrary to the decreasing trend of the tRu = 0.4 nm sample and has been attributed to the greatly enhanced Hex.

3.
Article in English | MEDLINE | ID: mdl-35578900

ABSTRACT

The temperature (T) dependences of magnetization dynamics, especially for magnetic damping anisotropy, have been systematically investigated in well-ordered Co2FeAl films with a biaxial anisotropy. It is found that the damping anisotropy factor Q, defined as the fractional difference of damping between the hard and easy axes, changes from 0.35 to -0.09 as T decreases from 300 to 80 K, performing a distinctive reorientation transition at T ∼ 200 K. Through the thickness-dependent damping measurement results, the damping anisotropy reorientation is verified to originate from the competitions between the intrinsic anisotropic distribution of bulk spin orbit coupling and the interfacial two-magnon scattering. The former governs the effective damping at high temperatures, while the latter with an opposite fourfold symmetry gradually plays a dominant role at reduced temperatures, leading to the transition of the Q value from positive to negative. The clear clarification of damping anisotropy variation as well as the underlying mechanism in this study would be of great importance for designing key spintronic devices with optimized dynamic magnetic properties.

4.
J Phys Condens Matter ; 34(1)2021 Oct 27.
Article in English | MEDLINE | ID: mdl-34571492

ABSTRACT

One key advantage of antiferromagnets over ferromagnets is the high magnetic resonance frequencies that enable ultrafast magnetization switching and oscillations. Among a variety of antiferromagnets, the synthetic antiferromagnet (SAF) is a promising candidate for high-speed spintronic devices design. In this paper, micromagnetic simulations are employed to study the resonance modes in an SAF structure consisting of two identical CoFeB ferromagnetic (FM) layers that are antiferromagnetically coupled via interlayer exchange coupling. When the external bias magnetic field is small enough to ensure the magnetizations of two FM sublayers remain antiparallel alignments, we find that there exist two resonance modes with different precession chirality, namelyy-component synchronized mode andz-component synchronized mode, respectively. These two resonance modes show different features from the conventional in-phase acoustic mode and out-of-phase optic mode. The simulation results are in good agreement with our theoretical analyses.

5.
Phys Chem Chem Phys ; 23(22): 12612-12619, 2021 Jun 02.
Article in English | MEDLINE | ID: mdl-34059866

ABSTRACT

Magnetization dynamics of the epitaxially-grown Co2FeAl (CFA) thin films have been systematically investigated by the time-resolved magneto-optical Kerr effect (TR-MOKE). The dependences of precession frequency f, relaxation time τ and magnetic damping factor α upon the orientation of applied magnetic field are found to have a strong four-fold symmetry. Two series of samples with various substrate temperatures (Ts) and thickness (tCFA) were prepared and a large Gilbert damping difference between the hard and easy axes is extracted to be 3.3 × 10-3 after subtracting the extrinsic contributions of spin pumping, two-magnon scattering and magnetic inhomogeneities. The four-fold variation of Gilbert damping relates closely to the in-plane magnetocrystalline anisotropy and can be attributed to the anisotropic distribution of spin-orbit coupling. Our findings provide new insights into the anisotropic properties of magnetization and damping, which is very helpful for designing and optimizing advanced spintronic devices on different demands.

6.
J Phys Chem Lett ; 12(9): 2394-2399, 2021 Mar 11.
Article in English | MEDLINE | ID: mdl-33661010

ABSTRACT

Topological insulators (TIs) with spin-momentum-locked metallic surface states can exert giant spin-orbit torques, offering great potential in energy-efficient magnetic memory devices. In this work, temperature (T)-dependent SOT efficiencies are investigated in Sb2Te3/Ta/TbCo heterostructures with perpendicular magnetic anisotropy. The spin Hall angle θSH is around 0.16 at room temperature (RT), which is much higher than that of the control sample without TI. Moreover, as T decreases from RT down to 10 K, θSH exhibits a conspicuous 5-fold enhancement. Detailed analysis indicates that the θSH enhancement at reduced temperatures mainly results from the improved spin-polarized surface states, as evidenced from the continuously increased ratio of surface-to-bulk conduction. The θSH difference between 20 and 10 nm Sb2Te3 gradually shrinks with the increase of T, which is due to the increase of bulk state contribution. Our findings provide a deep insight into the spin transport mechanisms and robust charge-spin conversion in TIs.

7.
J Phys Condens Matter ; 32(33): 335804, 2020 Apr 15.
Article in English | MEDLINE | ID: mdl-32294634

ABSTRACT

Amorphous CoFeB films grown on GaAs(001) substrates demonstrating significant in-plane uniaxial magnetic anisotropy were investigated by vector network analyzer ferromagnetic resonance. Distinct in-plane anisotropy of magnetic damping, with a largest maximum-minimum damping ratio of about 109%, was observed via analyzing the frequency dependence of linewidth in a linear manner. As the CoFeB film thickness increases from 3.5 nm to 30 nm, the amorphous structure for all the CoFeB films is maintained while the magnetic damping anisotropy decreases significantly. In order to reveal the inherent mechanism responsible for the anisotropic magnetic damping, studies on time-resolved magneto-optical Kerr effect and high resolution transmission electron microscopy were performed. Those results indicate that the in-plane angular dependent anisotropic damping mainly originates from two-magnon scattering, while the Gilbert damping keeps almost unchanged.

8.
Phys Chem Chem Phys ; 21(30): 16830-16837, 2019 Aug 14.
Article in English | MEDLINE | ID: mdl-31334707

ABSTRACT

High frequency magnetic precessions with strong intensity are strongly desired in material systems for high performance magnetic memory or nano-oscillator applications with ultrafast manipulation speed. Here, we demonstrate an exchange-coupled asymmetric composite film structure of Ta/Pd/[Pd/Co]5/Cu(tCu)/[Co/Ni]5/Ta with adjustable strong perpendicular magnetic anisotropy and interlayer coupling strength, in which the dynamic magnetic properties are systematically studied by using time-resolved magneto-optical Kerr effect spectroscopy. It is demonstrated that the in-phase precession frequency is between those of the single hard magnetic [Pd/Co]5 and soft [Co/Ni]5 multilayers, which can be significantly enhanced for the strongly coupled case at tCu < 1 nm. Moreover, in the weakly coupled samples with tCu = 1.0-3.0 nm, besides the common in-phase acoustic mode, an out-of-phase optical mode occurs simultaneously with a frequency even higher than that of the hard magnetic [Pd/Co]5 layer. The optical mode precession frequency and amplitude show an unusual non-monotonic variation trend with the increase of tCu, which has been theoretically analyzed and attributed to the co-effect of decreased coupling strength and increased magnetic anisotropy field difference between the two multilayer stacks. Moreover, by adjusting tCu and the [Co/Ni] repetition number N, an optical mode of strong intensity can be actively achieved, even reaching 80% as compared to the acoustic mode. These results provide effective control and better understanding of magnetic dynamics in perpendicular composite films, which are of key importance for developing ultrafast spintronics-based devices.

9.
ACS Appl Mater Interfaces ; 11(33): 30446-30452, 2019 Aug 21.
Article in English | MEDLINE | ID: mdl-31347362

ABSTRACT

To realize high-speed nonvolatile magnetic memory with low energy consumption, electric switching of perpendicular magnetization by spin-orbit torque in the heavy metal/ferromagnetic (HM/FM) structure has recently attracted intensive attention. Conventionally, an external in-plane magnetic field for breaking the symmetry is required for achieving electric switching of perpendicular magnetization. However, electric switching without external field is the prerequisite for the integration of magnetic functionality into the integrated circuit devices. Here, we propose a new method of utilizing a W wedge in the Pt/W/FM structure to induce a spin current gradient, which can result in an in-plane equivalent field along the wedge thickness gradient direction. We experimentally demonstrate the deterministic magnetization switching of perpendicular Co/Ni multilayers without external magnetic field when the electric current is along the wedge thickness gradient direction. Our findings shed light on free field electric switching of magnetization by a new physical parameter-an asymmetric spin current induced by a bilayer wedge structure.

10.
ACS Appl Mater Interfaces ; 10(5): 5090-5098, 2018 Feb 07.
Article in English | MEDLINE | ID: mdl-29328631

ABSTRACT

Dynamic magnetic properties in perpendicularly exchange-coupled [Co/Ni]5/Cu (tCu = 0-2 nm)/TbCo structures show strong dependences on the interfacial antiferromagnetic strength Jex, which is controlled by the Cu interlayer thickness. The precession frequency f and effective damping constant αeff of a [Co/Ni]5 multilayer differ distinctly for parallel (P) and antiparallel (AP) magnetization orientation states. For samples with a thin tCu, f of the AP state is apparently higher, whereas αeff is lower than that in the P state, owing to the unidirectional exchange bias effect (HEB) from the TbCo layer. The differences in f and αeff between the two states gradually decrease with increasing tCu. By using a uniform precession model including an additional HEB term, the field-dependent frequency curves can be well-fitted, and the fitted HEB value is in good agreement with the experimental data. Moreover, the saturation damping constant α0 displays a nearly linear correlation with Jex. It decreases significantly with Jex and eventually approaches a constant value of 0.027 at tCu = 2 nm where Jex vanishes. These results provide a better understanding and effective control of magnetization dynamics in exchange-coupled composite structures for spintronic applications.

11.
Small ; 13(40)2017 10.
Article in English | MEDLINE | ID: mdl-28834264

ABSTRACT

Suspended single-walled carbon nanotubes (SWNTs) have advantages in mechanical resonators and highly sensitive sensors. Large-scale fabrication of suspended SWNTs array devices and uniformity among SWNTs devices remain a great challenge. This study demonstrates an effective, fast, and wafer-scale technique to fabricate suspended SWNT arrays, which is based on a dynamic motion of silver liquid to suspend and align the SWNTs between the prefabricated palladium electrodes in high temperature annealing treatment. Suspended, strained, and aligned SWNTs are synthesized on a 2 × 2 cm2 substrate with an average density of 10 tubes per micrometer. Under the optimal conditions, almost all SWNTs become suspended. A promising formation model of suspended SWNTs is established. The Kelvin four-terminal resistance measurement shows that these SWNT array devices have extreme low contact resistance. Meanwhile, the suspended SWNT array field effect transistors are fabricated by selective etching of metallic SWNTs using electrical breakdown. This method of large-scale fabrication of suspended architectures pushes the study of nanoscale materials into a new stage related to the electrical physics and industrial applications.

12.
Sci Rep ; 6: 18719, 2016 Jan 06.
Article in English | MEDLINE | ID: mdl-26732287

ABSTRACT

Effective manipulation of magnetization orientation driven by electric field in a perpendicularly magnetized tunnel junction introduces technologically relevant possibility for developing low power magnetic memories. However, the bipolar orientation characteristic of toggle-like magnetization switching possesses intrinsic difficulties for practical applications. By including both the in-plane (T//) and field-like (T⊥) spin-transfer torque terms in the Landau-Lifshitz-Gilbert simulation, reliable and deterministic magnetization reversal can be achieved at a significantly reduced current density of 5×10(9) A/m(2) under the co-action of electric field and spin-polarized current, provided that the electric-field pulse duration exceeds a certain critical value τc. The required critical τc decreases with the increase of T⊥ strength because stronger T⊥ can make the finally stabilized out-of-plane component of magnetization stay in a larger negative value. The power consumption for such kind of deterministic magnetization switching is found to be two orders of magnitude lower than that of the switching driven by current only.

13.
Sci Rep ; 5: 12352, 2015 Jul 20.
Article in English | MEDLINE | ID: mdl-26190066

ABSTRACT

Half-metallic Co-based full-Heusler alloys with perpendicular magnetic anisotropy (PMA), such as Co2FeAl in contact with MgO, are receiving increased attention recently due to its full spin polarization for high density memory applications. However, the PMA induced by MgO interface can only be realized for very thin magnetic layers (usually below 1.3 nm), which would have strong adverse effects on the material properties of spin polarization, Gilbert damping parameter, and magnetic stability. In order to solve this issue, we fabricated oxidized Co50Fe25Al25 (CFAO) films with proper thicknesses without employing the MgO layer. The samples show controllable PMA by tuning the oxygen pressure (PO2) and CFAO thickness (tCFAO), large perpendicular anisotropy field of ~8.0 kOe can be achieved at PO2 = 12% for the sample of tCFAO = 2.1 nm or at PO2 = 7% for tCFAO = 2.8 nm. The loss of PMA at thick tCFAO or high PO2 results mainly from the formation of large amount of CoFe oxides, which are superparamagnetic at room temperature but become hard magnetic at low temperatures. The magnetic CFAO films, with strong PMA in a relatively wide thickness range and small intrinsic damping parameter below 0.028, would find great applications in developing advanced spintronic devices.

14.
Sci Rep ; 5: 10863, 2015 Jun 15.
Article in English | MEDLINE | ID: mdl-26074295

ABSTRACT

Interfacial exchange coupling and magnetization reversal characteristics in the perpendicular heterostructures consisting of an amorphous ferrimagnetic (FI) TbxCo(100-x) alloy layer exchange-coupled with a ferromagnetic (FM) [Co/Ni]N multilayer have been investigated. As compared with pure TbxCo(100-x) alloy, the magnetization compensation composition of the heterostructures shift to a higher Tb content, implying Co/Ni also serves to compensate the Tb moment in TbCo layer. The net magnetization switching field Hc⊥ and interlayer interfacial coupling field Hex, are not only sensitive to the magnetization and thickness of the switched TbxCo(100-x) or [Co/Ni]N layer, but also to the perpendicular magnetic anisotropy strength of the pinning layer. By tuning the layer structure we achieve simultaneously both large Hc⊥ = 1.31 T and Hex = 2.19 T. These results, in addition to the fundamental interest, are important to understanding of the interfacial coupling interaction in the FM/FI heterostructures, which could offer the guiding of potential applications in heat-assisted magnetic recording or all-optical switching recording technique.

15.
Nanomicro Lett ; 6(4): 359-364, 2014.
Article in English | MEDLINE | ID: mdl-30464947

ABSTRACT

The exchange-coupled [Co/Ni]N/TbFe nano-magnetic films can display strong perpendicular magnetic anisotropy (PMA) which depends on the Tb:Fe component ratio, TbFe layer thickness and the repetition number N of [Co/Ni]N multilayer. Perpendicular spin valves in the nano thickness scale, consisting of a [Co/Ni]3 free and a [Co/Ni]5/TbFe reference multilayer, show high giant magnetoresistance (GMR) signal of 6.5 % and a large switching field difference over 3 kOe. However, unexpected slanting of the free layer magnetization, accompanied by a reduced GMR ratio, was found to be caused by the presence of a thick Fe-rich or even a thin but Tb-rich TbFe layer. We attribute this phenomenon to the large magnetostriction effect of TbFe which probably induces strong stress acting on the free layer and hence reduces its interfacial PMA.

SELECTION OF CITATIONS
SEARCH DETAIL
...