Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
J Clin Neurosci ; 126: 68-74, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38850763

ABSTRACT

OBJECTIVES: To investigate the causes of space-occupying tumor bed cysts formed early after glioma resection by measuring the osmotic pressure gradient between cystic fluid, serum, and cerebrospinal fluid (CSF) and propose a new method of bedside ultrasound-assisted puncture and drainage (UAP&D) under local anesthesia for treatment. METHODS: Bedside UAP&D under local anesthesia was performed through a burr hole on the skull flap.Following a successful puncture, cystic fluid was collected, while blood and CSF were obtained through vein and lumbar puncture, respectively. The osmotic pressure of all fluids collected was measured. The appearance, biochemical composition, and results of microbial culture of cystic fluid and CSF were analyzed. Within 24 h after UAP&D, a CT examination and Glasgow coma scale (GCS) were assessed. RESULTS: The osmotic pressure of cystic fluid was higher than that of serum and CSF. White blood cell count and protein concentration were higher in the cystic fluid compared to the CSF. Conversely, the concentration of chloride ions and glucose were lower. CT scan confirmed the correct placement of the cysts' drainage tube and that the cysts' volume decreased significantly with continued drainage. Accompanied by a reduction in the volume of cysts, there were significant improvements in GCS score within 24 h after UAP&D. All drainage tubes were removed within 2-5 days, and no puncture tract hemorrhage or infection was observed. CONCLUSION: The osmotic pressure gradient between cystic fluid, serum, and CSF caused the formation of early post-operative space-occupying tumor bed cysts for glioma. UAP&D aligns with the concept that micro-invasive neurosurgery is an effective treatment method for such cysts.

2.
Front Neurosci ; 17: 1248493, 2023.
Article in English | MEDLINE | ID: mdl-38075273

ABSTRACT

Brain abscess originates from a localized cerebritis area of brain parenchyma, remaining a refractory infectious disease in the central nervous system. Causative pathogens can be wide-ranging, including bacteria, fungi, or parasites; thus, precise pathogen identification and individualized antimicrobial therapy determine patients' outcomes. Here, we report two cases where both patients only presented with limb dysfunction, but without symptoms, signs, or biological evidence of infection. Samples were obtained through brain stereoscopic surgeries and microbial identifications were performed to confirm the infection of Fusobacterium nucleatum. Further appropriate treatments were given, and the patients recovered well. Patient 1 was a 73-year-old male with a 20-day history of left-sided limbs weakness. A brain MRI showed a space-occupying lesion with a heterogeneously ring-enhancement character in the right frontal lobe. This patient underwent puncture biopsy of the lesion with robot-assisted guidance to confirm a brain abscess. Empirical antibiotic therapy was immediately given until the pathogen was identified as Fusobacterium nucleatum; thus, he received specific antibiotic therapy with metronidazole and recovered well after treatment. Patient 2 was a 22-year-old female with heart disease history who complained of right-sided limb weakness for nine days. A brain MRI showed a circular enhanced lesion with a thin capsule wall and surrounding edema in the left frontal lobe. This patient underwent puncture drainage of the lesion with robot-assisted guidance and a brain abscess was confirmed. Empirical antibiotic therapy was given until the pathogen was identified as Fusobacterium nucleatum and then she also received metronidazole treatment. Her symptoms recovered and the lesion disappeared after 1 month. Hence, we reviewed the diagnosis and treatment of cryptogenic brain abscess caused by Fusobacterium nucleatum and highlight that precise neurosurgical interventions and identification of causative pathogens are crucial for the management of brain abscess.

3.
CNS Neurosci Ther ; 29(11): 3430-3445, 2023 11.
Article in English | MEDLINE | ID: mdl-37308741

ABSTRACT

AIMS: Glioblastoma multiforme (GBM) is the deadliest glioma and its resistance to temozolomide (TMZ) remains intractable. Long non-coding RNAs (lncRNAs) play crucial roles in that and this study aimed to investigate underlying mechanism of HOXD-AS2-affected temozolomide sensitivity in glioblastoma. METHODS: We analyzed and validated the aberrant HOXD-AS2 expression in glioma specimens. Then we explored the function of HOXD-AS2 in vivo and in vitro and a clinical case was also reviewed to examine our findings. We further performed mechanistic experiments to investigate the mechanism of HOXD-AS2 in regulating TMZ sensitivity. RESULTS: Elevated HOXD-AS2 expression promoted progression and negatively correlated with prognosis of glioma; HOXD-AS2 attenuated temozolomide sensitivity in vitro and in vivo; The clinical case also showed that lower HOXD-AS2 sensitized glioblastoma to temozolomide; STAT3-induced HOXD-AS2 could interact with IGF2BP2 protein to form a complex and sequentially upregulate STAT3 signaling, thus forming a positive feedback loop regulating TMZ sensitivity in glioblastoma. CONCLUSION: Our study elucidated the crucial role of the HOXD-AS2-STAT3 positive feedback loop in regulating TMZ sensitivity, suggesting that this could be provided as a potential therapeutic candidate of glioblastoma.


Subject(s)
Brain Neoplasms , Glioblastoma , MicroRNAs , Humans , Temozolomide/pharmacology , Temozolomide/therapeutic use , Glioblastoma/genetics , Feedback , Drug Resistance, Neoplasm , Cell Line, Tumor , Brain Neoplasms/genetics , MicroRNAs/metabolism , Antineoplastic Agents, Alkylating/pharmacology , Antineoplastic Agents, Alkylating/therapeutic use , Gene Expression Regulation, Neoplastic , RNA-Binding Proteins/metabolism , STAT3 Transcription Factor/metabolism
4.
Cancer Cell ; 41(4): 693-710.e8, 2023 04 10.
Article in English | MEDLINE | ID: mdl-36963400

ABSTRACT

Malignant gliomas are largely refractory to immune checkpoint blockade (ICB) therapy. To explore the underlying immune regulators, we examine the microenvironment in glioma and find that tumor-infiltrating T cells are mainly confined to the perivascular cuffs and express high levels of CCR5, CXCR3, and programmed cell death protein 1 (PD-1). Combined analysis of T cell clustering with T cell receptor (TCR) clone expansion shows that potential tumor-killing T cells are mainly categorized into pre-exhausted/exhausted and effector CD8+ T subsets, as well as cytotoxic CD4+ T subsets. Notably, a distinct subpopulation of CD4+ T cells exhibits innate-like features with preferential interleukin-8 (IL-8) expression. With IL-8-humanized mouse strain, we demonstrate that IL-8-producing CD4+ T, myeloid, and tumor cells orchestrate myeloid-derived suppressor cell infiltration and angiogenesis, which results in enhanced tumor growth but reduced ICB efficacy. Antibody-mediated IL-8 blockade or the inhibition of its receptor, CXCR1/2, unleashes anti-PD-1-mediated antitumor immunity. Our findings thus highlight IL-8 as a combinational immunotherapy target for glioma.


Subject(s)
Glioma , Immune Checkpoint Inhibitors , Interleukin-8 , Animals , Mice , CD8-Positive T-Lymphocytes , Cell Line, Tumor , Glioma/drug therapy , Glioma/pathology , Immune Checkpoint Inhibitors/pharmacology , Immunotherapy/methods , Interleukin-8/metabolism , T-Lymphocytes , Tumor Microenvironment
5.
Appl Opt ; 61(26): 7644-7652, 2022 Sep 10.
Article in English | MEDLINE | ID: mdl-36256364

ABSTRACT

In this paper, a band-stop filter based on a surface plasmon polariton metal-insulator-metal is designed and studied. The relationship between wavelength and filter transmittance is simulated using the finite difference time domain method and coupled mode theory. Compared with a single-diamond resonator, the minimum transmittances of the double-diamond resonator and double-rectangular resonator at a fixed wavelength are increased by 11.33% and 14.25%, respectively, achieving an enhancement effect. The research results also show that the sensitivity of the filter can reach 860 nm/RIU. The structure has good application prospects in optical integration, optical communication, and optical information processing.

6.
Nanomaterials (Basel) ; 12(19)2022 Sep 22.
Article in English | MEDLINE | ID: mdl-36234428

ABSTRACT

In this paper, we propose a dual-channel mid-infrared toroidal metasurface that consists of split equilateral triangular rings. The electromagnetic responses are analyzed by the finite-difference-time-domain (FDTD) method and temporal coupled-mode theory (TCMT). The results show that one channel of the metasurface is insensitive to the polarization angle of the incident light and temperature, while the other channel is sensitive. The reflectance and resonance wavelength can be manipulated by the polarization angle and temperature independently. Based on such a mechanism, we propose metasurfaces for two-bit programmable imaging and thermal imaging. The metasurfaces are believed to have potential applications in information processing and thermal radiation manipulation.

7.
Nanomaterials (Basel) ; 12(10)2022 May 18.
Article in English | MEDLINE | ID: mdl-35630953

ABSTRACT

A dual broadband terahertz bifunction absorber that can be actively tuned is proposed. The optical properties of the absorber were simulated and numerically calculated using the finite-difference time-domain (FDTD) method. The results show that when the conductivity of vanadium dioxide is less than σ0=8.5×103 S/m, the absorptance can be continuously adjusted between 2% and 100%. At vanadium dioxide conductivity greater than σ0=8.5×103 S/m, the absorption bandwidth of the absorber can be switched from 3.4 THz and 3.06 THz to 2.83 THz and none, respectively, and the absorptance remains above 90%. This achieves perfect modulation of the absorptance and absorption bandwidth. The physical mechanism of dual-broadband absorptions and perfect absorption is elucidated by impedance matching theory and electric field distribution. In addition, it also has the advantage of being polarization insensitive and maintaining stable absorption at wide angles of oblique incidence. The absorber may have applications in emerging fields such as modulators, stealth and light-guided optical switches.

8.
Theranostics ; 12(1): 459-473, 2022.
Article in English | MEDLINE | ID: mdl-34987659

ABSTRACT

Rationale: Around 10%-20% patients with glioblastoma (GBM) are diagnosed with more than one tumor lesions or multifocal GBM (mGBM). However, the understanding on genetic, DNA methylomic, and transcriptomic characteristics of mGBM is still limited. Methods: In this study, we collected nine tumor foci from three mGBM patients followed by whole genome sequencing, whole genome bisulfite sequencing, RNA sequencing, and immunohistochemistry. The data were further examined using public GBM databases and GBM cell line. Results: Analysis on genetic data confirmed common features of GBM, including gain of chr.7 and loss of chr.10, loss of critical tumor suppressors, high frequency of PDGFA and EGFR amplification. Through profiling DNA methylome of individual tumor foci, we found that promoter methylation status of genes involved in detection of chemical stimulus, immune response, and Hippo/YAP1 pathway was significantly changed in mGBM. Although both CNV and promoter methylation alteration were involved in heterogeneity of different tumor foci from same patients, more CNV events than promoter hypomethylation events were shared by different tumor foci, implying CNV were relatively earlier than promoter methylation alteration during evolution of different tumor foci from same mGBM. Moreover, different tumor foci from same mGBM assumed different molecular subtypes and mesenchymal subtype was prevalent in mGBM, which might explain the worse prognosis of mGBM than single GBM. Interestingly, we noticed that LIF and CCL2 was tightly correlated with mesenchymal subtype tumor focus in mGBM and predicted poor survival of GBM patients. Treatment with LIF and CCL2 produced mesenchymal-like transcriptome in GBM cells. Conclusions: Together, our work herein comprehensively profiled multi-omics features of mGBM and emphasized that components of extracellular microenvironment, such as LIF and CCL2, contributed to the evolution and prognosis of tumor foci in mGBM patients.


Subject(s)
Brain Neoplasms/genetics , Chemokine CCL2/genetics , Glioblastoma/genetics , Leukemia Inhibitory Factor/genetics , Adult , Aged , Biomarkers, Tumor/genetics , Female , Gene Expression Regulation, Neoplastic , Humans , Male , Middle Aged , Tumor Microenvironment
9.
Chin Neurosurg J ; 7(1): 8, 2021 Jan 15.
Article in English | MEDLINE | ID: mdl-33446281

ABSTRACT

BACKGROUND: Multifocal glioblastoma is a rare type of glioblastoma with worse prognosis. In this article, we aimed to report two cases of classical multifocal glioblastoma. CASE PRESENTATION: In case 1, a 47-year-old male presented with dizziness, and once had a sudden loss of consciousness accompanied by convulsion of limbs. Contrast-enhanced MRI showed multiple lesions with heterogeneously ring-enhanced characters in the left hemisphere, diagnosed as multifocal glioblastoma. He underwent a craniotomy of all lesions, concurrent radiotherapy and chemotherapy as well as additional chemotherapy of temozolomide. After 2 cycles, repeat MRI showed that the new lesions already occurred and progressed. Eventually, he abandoned the chemotherapy after the 2 cycles and died 1 year later. In case 2, a 71-year-old male presented with a history of headache, left limb weakness, and numbness. Discontinuous convulsion of limbs once occurred. Contrast-enhanced MRI showed multiple lesions located in the right hemisphere, diagnosed as multifocal glioblastoma. He underwent a right frontoparietal craniotomy of the main lesion. Hemorrhage of the residual tumor and pulmonary artery embolism occurred synchronously. Eventually, his family decided not to pursue any further treatment and opted for hospice care and he passed away within 11 days of surgery. CONCLUSIONS: We reported two cases of typical multifocal glioblastoma. Valid diagnosis is crucial; then, resection of multiple lesions and canonical radio-chemotherapy probably bring survival benefits.

10.
J Clin Neurosci ; 83: 71-76, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33358091

ABSTRACT

Multiple glioblastoma multiforme (GBM) is classified as multifocal and multicentric GBM according to whether there is communication between the lesions. Multiple GBM is more genetically heterogeneous, aggressive and resistant to chemoradiotherapy than unifocal GBM, and has a worse prognosis. There is no international consensus on the treatment of multiple GBM. This review discusses some paradigms of multiple GBM and focuses on the heterogeneity spread pathway, imaging diagnosis, pathology, molecular characterization and prognosis of multifocal and multicentric GBM. Several promising therapeutic methods of multiple GBM are also recommended.


Subject(s)
Brain Neoplasms/pathology , Glioblastoma/pathology , Brain Neoplasms/diagnosis , Brain Neoplasms/therapy , Glioblastoma/diagnosis , Glioblastoma/therapy , Humans
11.
Cancer Commun (Lond) ; 39(1): 81, 2019 12 03.
Article in English | MEDLINE | ID: mdl-31796105

ABSTRACT

BACKGROUND: High-grade glioma (HGG) is a fatal human cancer. Bortezomib, a proteasome inhibitor, has been approved for the treatment of multiple myeloma but its use in glioma awaits further investigation. This study aimed to explore the chemotherapeutic effect and the underlying mechanism of bortezomib on gliomas. METHODS: U251 and U87 cell viability and proliferation were detected by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) assay, tumor cell spheroid growth, and colony formation assay. Cell apoptosis and cell cycle were detected by flow cytometry. Temozolomide (TMZ)-insensitive cell lines were induced by long-term TMZ treatment, and cells with stem cell characteristics were enriched with stem cell culture medium. The mRNA levels of interested genes were measured via reverse transcription-quantitative polymerase chain reaction, and protein levels were determined via Western blotting/immunofluorescent staining in cell lines and immunohistochemical staining in paraffin-embedded sections. Via inoculating U87 cells subcutaneously, glioma xenograft models in nude mice were established for drug experiments. Patient survival data were analyzed using the Kaplan-Meier method. RESULTS: Bortezomib inhibited the viability and proliferation of U251 and U87 cells in a dose- and time-dependent manner by inducing apoptosis and cell cycle arrest. Bortezomib also significantly inhibited the spheroid growth, colony formation, and stem-like cell proliferation of U251 and U87 cells. When administrated in combination, bortezomib showed synergistic effect with TMZ in vitro and sensitized glioma to TMZ treatment both in vitro and in vivo. Bortezomib reduced both the mRNA and protein levels of Forkhead Box M1 (FOXM1) and its target gene Survivin. The FOXM1-Survivin axis was markedly up-regulated in established TMZ-insensitive glioma cell lines and HGG patients. Expression levels of FOXM1 and Survivin were positively correlated with each other and both related to poor prognosis in glioma patients. CONCLUSIONS: Bortezomib was found to inhibit glioma growth and improved TMZ chemotherapy efficacy, probably via down-regulating the FOXM1-Survivin axis. Bortezomib might be a promising agent for treating malignant glioma, alone or in combination with TMZ.


Subject(s)
Antineoplastic Agents/therapeutic use , Bortezomib/therapeutic use , Brain Neoplasms/drug therapy , Forkhead Box Protein M1/genetics , Glioma/drug therapy , Survivin/genetics , Temozolomide/therapeutic use , Adolescent , Adult , Aged , Animals , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Bortezomib/pharmacology , Brain Neoplasms/genetics , Brain Neoplasms/metabolism , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Down-Regulation/drug effects , Female , Forkhead Box Protein M1/metabolism , Gene Expression Regulation, Neoplastic/drug effects , Glioma/genetics , Glioma/metabolism , Humans , Male , Mice, Inbred BALB C , Mice, Nude , Middle Aged , Survivin/metabolism , Temozolomide/pharmacology , Young Adult
12.
Cancer Lett ; 443: 91-107, 2019 02 28.
Article in English | MEDLINE | ID: mdl-30529153

ABSTRACT

Despite the clinical success of temozolomide (TMZ), its sensitivity remains a major challenge in glioblastoma (GBM). Here, we show that PLK4 affects TMZ sensitivity by regulating the IKBKE/NF-κB axis. The mRNA level of PLK4 was significantly associated with glioma grade progression and inversely correlated with overall survival (OS) in patients with high-grade gliomas (HGG). Further analyses indicated that GBM patients with low PLK4 expression levels gained greater survival benefits from chemotherapy than did those with high PLK4 expression. In GBM cells, TMZ sensitivity was decreased by ectopic expression of PLK4 and enhanced by depletion of PLK4. In the GBM mice model, inhibiting PLK4 in combination with chemotherapy slowed tumor growth and provided a significant survival benefit. Furthermore, PLK4 interacted with and phosphorylated IKBKE, leading to an increase in NF-κB transcriptional activity and anti-apoptosis. Notably, the PLK4 inhibitor CFI400945, which is currently in clinical trials, had a synergistic effect with TMZ, increasing TMZ sensitivity in xenografts from patient-derived primary GBMs. Our work describes the PLK4-IKBKE signaling axis that influences GBM proliferation and chemosensitivity, and can enhance the anti-tumor effects of chemotherapy via therapeutic targeting.


Subject(s)
Brain Neoplasms/pathology , Drug Resistance, Neoplasm , Glioblastoma/pathology , I-kappa B Kinase/metabolism , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Adolescent , Adult , Aged , Animals , Brain Neoplasms/drug therapy , Brain Neoplasms/genetics , Brain Neoplasms/metabolism , Cell Line, Tumor , Child , Disease Progression , Drug Resistance, Neoplasm/drug effects , Drug Synergism , Female , Gene Expression Regulation, Neoplastic , Glioblastoma/drug therapy , Glioblastoma/genetics , Glioblastoma/metabolism , Humans , Indazoles/administration & dosage , Indazoles/pharmacology , Indoles/administration & dosage , Indoles/pharmacology , Male , Mice , Middle Aged , Phosphorylation , Prognosis , Survival Analysis , Temozolomide/administration & dosage , Temozolomide/pharmacology , Xenograft Model Antitumor Assays , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...