Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
Add more filters










Publication year range
1.
Opt Lett ; 49(7): 1745-1748, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38560852

ABSTRACT

This study presents the implementation of an evanescent field (EF)-based sensing platform employing a hybrid film composed of graphene oxide (GO) and poly(methyl methacrylate) (PMMA), integrated onto coreless D-shaped fibers (cDsFs). The operational framework of the hybrid film-coated cDsFs (GoP-cDsFs) was comprehensively elucidated through theoretical and experimental analyses. To establish a baseline for comparison, the performance of the cDsFs with the sole inclusion of the PMMA film was investigated. Our investigations underscore the substantive role of graphene oxide in augmenting the evanescent field, thereby generating a synergistic effect that contributes to the overall enhancement of the evanescent field in the device. Consequently, the fabricated GoP-cDsF sensor manifests an outstanding sensitivity of -4.936 nm/°C, rendering it particularly well-suited for applications demanding high-sensitivity temperature sensing. Moreover, the unique attributes of the GoP-cDsF position it as a promising candidate for the measurement of both magnetic and electric fields, presenting an effective strategy for multifunctional sensing applications.

2.
Opt Lett ; 48(22): 5875-5878, 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-37966741

ABSTRACT

We demonstrate the generation of solitons and bound-state solitons in a passively mode-locked fiber laser based on the nonlinear polarization rotation effect by polarization-dependent helical grating. The CO2-laser-inscribed grating has a high polarization-dependent loss of 24.4 dB at 1558.4 nm, which has facilitated the achievement of stable mode locking. The soliton laser could generate 548.9 fs pulses at 1560.59 nm with a spectrum bandwidth of 5.45 nm and a signal-to-noise ratio of 75.2 dB. Through adjustment of the polarization controller and pump power, a bound-state soliton mode-locked pulse with a spectral modulation period of 3.11 nm was achieved and the temporal interval between the two solitons was 2.19 ps. Furthermore, its repetition rate can be easily manipulated by varying the pump power. The results indicated that the polarization-dependent helical grating is an excellent polarizer that could be applied in an ultrafast fiber laser.

3.
ACS Nano ; 17(21): 21749-21760, 2023 Nov 14.
Article in English | MEDLINE | ID: mdl-37843015

ABSTRACT

Wind turbine blades are often covered with ice and snow, which inevitably reduces their power generation efficiency and lifetime. Recently, a superhydrophobic surface has attracted widespread attention due to its potential values in anti-icing/deicing. However, the superhydrophobic surface can easily transition from Cassie-Baxter to Wenzel at low temperature, limiting its wide applications. Herein, inspired by the excellent water resistance and cold tolerance of Trifolium repens L. endowed by its micronano structure and low surface energy, a fresh structure was prepared by combining femtosecond laser processing technology and a boiling water treatment method. The prepared icephobic surface aluminum alloy (ISAl) mainly consists of a periodic microcrater array, nonuniform microclusters, and irregular nanosheets. This three-scale structure greatly promotes the stability of the Cassie-Baxter state. The critical Laplace pressure of ISAl is up to 1437 Pa, and the apparent water contact angle (CA) is higher than 150° at 0 °C. Those two factors contribute to its excellent anti-icing and deicing performances. The results show that the static icing delay time reaches 2577 s, and the ice adhesion strength is only 1.60 kPa. Furthermore, the anti-icing and deicing abilities of the proposed ISAl were examined under the environment of low temperature and high relative humidity to demonstrate its effectiveness. The dynamic anti-icing time of ISAl in extreme environments is up to 5 h, and ice can quickly fall with a speed of 34 r/min when it is in a horizontal rotational motion. Finally, ISAl has excellent reusability and mechanical durability, with the ice adhesion strength still being less than 6 kPa and the CA greater than 150° after 15 cycles of icing-deicing tests. The proposed structure would offer a promising strategy for the efficient anti-icing and deicing of wind turbine blades.

4.
Opt Lett ; 48(11): 2965-2968, 2023 Jun 01.
Article in English | MEDLINE | ID: mdl-37262255

ABSTRACT

We propose and demonstrate the fabrication of an all-fiber mode converter enabling simultaneous generation of multiple high-order core modes, which is realized by inscribing a helical long-period grating (HLPG) in a few-mode fiber (FMF) using a femtosecond laser. Helical refractive index modulation is introduced by continuously irradiating the core region with a highly focused femtosecond laser, while the fiber moves in a spiral path through a three-dimensional translation stage. Mode conversion from the LP01 mode to high-order core modes, including LP11, LP21, LP31, LP02, LP12, and LP41 modes, is achieved by controlling the inscription pitch of the grating. Moreover, first-, second-, third-, and fourth-order orbital angular momentum (OAM) modes can be directly generated using the HLPGs, and multiple OAM modes of different topological charges can be simultaneously excited using a single high diffraction order HLPG. This approach offers a new option for implementing with high-integration high-order mode converters or OAM mode generators.

5.
Opt Lett ; 48(10): 2611-2614, 2023 May 15.
Article in English | MEDLINE | ID: mdl-37186721

ABSTRACT

We propose and numerically demonstrate a scheme for physical-layer security based on chaotic phase encryption, where the transmitted carrier signal is used as the common injection for chaos synchronization, so there is no need for additional common driving. To ensure privacy, two identical optical scramblers consisting of a semiconductor laser and a dispersion component are used to observe the carrier signal. The results show that the responses of the optical scramblers are highly synchronized but are not synchronized with the injection. By properly setting the phase encryption index, the original message can be well encrypted and decrypted. Moreover, the legal decryption performance is sensitive to the parameter mismatch, since it can degrade the synchronization quality. A slight drop in synchronization induces an evident deterioration in decryption performance. Therefore, without perfectly reconstructing the optical scrambler, the original message cannot be decoded by an eavesdropper.

6.
Anal Methods ; 15(7): 969-978, 2023 Feb 16.
Article in English | MEDLINE | ID: mdl-36727617

ABSTRACT

A ternary nanocomposite photoelectrode composed of cadmium sulfide (CdS), polyaniline (PANI), and bismuth vanadate (BiVO4) was successfully designed by combining cyclic voltammetry (CV) with electrochemical deposition and high-temperature calcination. The first synthesized CdS/PANI/BiVO4 composite was used as a photoelectrochemical (PEC) monitoring platform for glutathione (GSH). The ternary CdS/PANI/BiVO4 nanocomposites exhibited higher PEC activity, which was attributed to the accelerated electron transfer by the loading of CdS and PANI, which enables the material surface to better adsorb the electrons separated by GSH, thereby oxidizing it into GSSH. The photoanodes were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), UV-vis diffuse reflectance spectroscopy, and photoelectrochemical experiments. Under the optimal experimental conditions, the BiVO4 electrode modified with CdS and PANI exhibited a linear response in the concentration range of 0.1-20 µM with a sensitivity of 0.669 µA mM-1 cm-2 and a detection limit of 40 nM. Moreover, the PEC sensor exhibits good reproducibility and long-term stability. In summary, the designed materials have excellent electrochemical properties, which make them ideal candidates for PEC detection of GSH.

7.
Opt Lett ; 47(9): 2157-2160, 2022 May 01.
Article in English | MEDLINE | ID: mdl-35486748

ABSTRACT

A ring-pattern liquid-filled photonic crystal fiber (R-LPCF) scheme, in which the first-ring holes (the six holes adjacent to the core) are filled with high-index inclusions, has been experimentally demonstrated to extend over a wide-guided spectral range. In such new fiber, the bandgap-like core mode is investigated, among which the telecommunication bandgap exhibits confinement losses five orders of magnitude smaller than those of the corresponding fully liquid-filled photonic bandgap fibers. Besides, the R-LPCF serving the thermal tunability when filled with index-matching liquid enables guided bandwidth switching from the 1.5-µm-band to the 1.3-µm-band communication window. Moreover, the structural parameters for two commercial photonic crystal fiber are quantified to confirm the feasibility of the proposed method.

8.
Nanomaterials (Basel) ; 11(9)2021 Sep 04.
Article in English | MEDLINE | ID: mdl-34578616

ABSTRACT

We theoretically study the multiple sharp Fano resonances produced by the near-field coupling between the multipolar narrow plasmonic whispering-gallery modes (WGMs) and the broad-sphere plasmon modes supported by a deep-subwavelength spherical hyperbolic metamaterial (HMM) cavity, which is constructed by five alternating silver/dielectric layers wrapping a dielectric nanosphere core. We find that the linewidths of WGMs-induced Fano resonances are as narrow as 7.4-21.7 nm due to the highly localized feature of the electric fields. The near-field coupling strength determined by the resonant energy difference between WGMs and corresponding sphere plasmon modes can lead to the formation of the symmetric-, asymmetric-, and typical Fano lineshapes in the far-field extinction efficiency spectrum. The deep-subwavelength feature of the proposed HMM cavity is verified by the large ratio (~5.5) of the longest resonant wavelength of WGM1,1 (1202.1 nm) to the cavity size (diameter: 220 nm). In addition, the resonant wavelengths of multiple Fano resonances can be easily tuned by adjusting the structural/material parameters (the dielectric core radius, the thickness and refractive index of the dielectric layers) of the HMM cavity. The narrow linewidth, multiple, and tunability of the observed Fano resonances, together with the deep-subwavelength feature of the proposed HMM cavity may create potential applications in nanosensors and nanolasers.

9.
Opt Lett ; 46(17): 4342-4345, 2021 Sep 01.
Article in English | MEDLINE | ID: mdl-34470010

ABSTRACT

Large mode area (LMA) fibers are widely used in high-power fiber lasers to solve the nonlinear problems. In this Letter, a novel LMA fiber with heterogeneous helical claddings (HHCs) is proposed. A coordinate transformation simulation technique is adopted to analyze the fiber mode transmission characteristics. The effects of the fiber parameters such as θ,Λ,r,n0,n1,n2,n3, and λ on the mode transmission characteristics include loss coefficient L and effective mode area Aeff. When θ=14∘, Λ=22mm, n0=n2=1.439, and n1=n3=1.438 are adopted. The loss coefficients are L01=0.093dB/m, L11=9.47dB/m, and L21=23.36dB/m; the single-mode fiber diameter 2r is at least 60 µm; and the corresponding effective mode field area Aeff is 2025µm2. As the helix pitch is a centimeter order of magnitude and the fiber is all solid state, the HHC fiber is relatively easy to fabricate and convenient for cutting, splicing, etc., and will be well applied in the field of high-power fiber lasers.

10.
Nanomaterials (Basel) ; 11(8)2021 Aug 10.
Article in English | MEDLINE | ID: mdl-34443870

ABSTRACT

We study theoretically the Fano resonances (FRs) produced by the near-field coupling between the lowest-order (dipolar) sphere plasmon resonance and the dipolar cavity plasmon mode supported by an Ag nanoshell or the hybrid mode in a simple three-layered Ag nanomatryushka constructed by incorporating a solid Ag nanosphere into the center of Ag nanoshell. We find that the linewidth of dipolar cavity plasmon resonance or hybrid mode induced FR is as narrow as 6.8 nm (corresponding to a high Q-factor of ~160 and a long dephasing time of ~200 fs) due to the highly localized feature of the electric-fields. In addition, we attribute the formation mechanisms of typical asymmetrical Fano line profiles in the extinction spectra to the constructive (Fano peak) and the destructive interferences (Fano dip) arising from the symmetric and asymmetric charge distributions between the dipolar sphere and cavity plasmon or hybrid modes. Interestingly, by simply adjusting the structural parameters, the dielectric refractive index required for the strongest FR in the Ag nanomatryushka can be reduced to be as small as 1.4, which largely reduces the restriction on materials, and the positions of FR can also be easily tuned across a broad spectral range. The ultranarrow linewidth, highly tunability together with the huge enhancement of electric fields at the FR may find important applications in sensing, slow light, and plasmon rulers.

11.
Appl Opt ; 59(34): 10929-10932, 2020 Dec 01.
Article in English | MEDLINE | ID: mdl-33361914

ABSTRACT

We propose and demonstrate a broadband tunable single-longitudinal-mode (SLM) erbium-doped fiber laser based on a microfiber knot resonator (MKR). The MKR is made from a double-ended fiber taper and employed for SLM filtering based on the Vernier effect. An unpumped erbium-doped fiber is used in the fiber laser cavity to suppress mode-hopping for a stabilized SLM laser operation. When combined with an optical fiber filter, widely tunable SLM laser generation is achieved. The proposed SLM laser can be tuned from 1545 to 1565 nm with a high side-mode suppression ratio of about 55 dB and a high stability.

12.
Appl Opt ; 59(36): 11337-11341, 2020 Dec 20.
Article in English | MEDLINE | ID: mdl-33362058

ABSTRACT

We report on two-dimensional (2D) hexagonal boron nitride (hBN) as saturable absorber (SA) material in a passively Q-switched erbium-doped fiber laser (EDFL) operating at 1.5 µm. The 2D hBN film as an SA is fabricated and transferred onto the optical fiber tip by natural deposition technology. In the Q-switched operation, we obtain stable Q-switched laser operation with a maximum average 10% output power of 2.25 mW, corresponding to a repetition frequency of 55.5 kHz, shortest pulse width of 6.77 µs, and single pulse energy of 40.49 nJ. The achieved PQS at 1.5 µm EDFL with 2D hBN as an SA may have potential applications in many novel 2D materials and all-fiber lasers.

13.
Opt Express ; 28(22): 32447-32455, 2020 Oct 26.
Article in English | MEDLINE | ID: mdl-33114930

ABSTRACT

A sensitivity enhanced temperature sensor with cascaded tapered two-mode fibers (TTMFs) based on the Vernier effect is proposed and experimentally demonstrated. It is confirmed that series connection exhibits higher extinction ratio than parallel one both by theory and experiments, which provides guidance for related experiments. In experiments, two TTMFs have the same single-mode fiber-TTMF-single-mode fiber configuration, while the free spectral ranges (FSRs) are chosen with slightly difference by modifying the parameters in the tapering process. Experimental results show that the proposed temperature sensor possesses sensitivity of -3.348 nm/°C in temperature measurement range from 25 °C to 60°C, 11.3 times sensitivity enhancement in comparison with single TTMF. Benefiting from advantages of high temperature sensitivity, simplicity of manufacture and long distance sensing, this novel sensitivity enhanced temperature sensor can be applied to various particular fields, such as oil wells, coal mines and so on.

14.
Opt Express ; 28(19): 28209-28217, 2020 Sep 14.
Article in English | MEDLINE | ID: mdl-32988096

ABSTRACT

Bidirectional ultrafast fiber lasers capable of generating counter-propagating (CP) coherent solitons are promising to be served as a dual-comb light source for the applications in spectroscopy and gyroscope. In the absence of efficient numerical model, the understanding of the operation of bidirectional fiber lasers is very limited. In this paper, we experimentally explore the pulsating dynamics of CP solitons in a bidirectional mode locked fiber laser and present a set of rich complex dynamics of CP solitons, revealing for the first time, to the best of our knowledge, the periodic breathing and acyclic pulsating dynamics of CP solitons. With a bi-directional pumping configuration, the impacts of gain distribution along the fiber on the dynamics of CP solitons have been investigated and discussed. These results provide further evidence of the universality of breathing dynamics of solitons. More importantly, the abundant dynamical behavior of CP solitons demonstrated in this paper, collaborating with a handful of previous reports on the buildup dynamics of CP solitons in bidirectional fiber lasers, underline further the independent evolving dynamics of CP solitons. These findings contribute to the understanding of how bidirectional lasers work and, consequently, will accelerate the development of bidirectional lasers in the applications such as gyroscope.

15.
Opt Express ; 28(19): 28686-28695, 2020 Sep 14.
Article in English | MEDLINE | ID: mdl-32988134

ABSTRACT

A random fiber laser with flexible wavelength interval switching is proposed and demonstrated through two switching methods. One is to change the effective structure of the laser cavity by controlling the switches of 980 nm pump laser diodes (LDs) for erbium-doped fibers (EDFs), which can achieve the switching of the wavelength interval from a single Brillouin frequency shift (BFS) of 0.088 nm to a double BFS of 0.176 nm. Another method is to manipulate the gain provided by the two EDF amplifiers by controlling the power of the three 980 nm LDs, thereby realizing the optical switching of the wavelength interval. This kind of wavelength interval switchable random fiber laser increases the flexibility and functionality of multi-wavelength light sources, and further expands the application range of the random fiber lasers. Furthermore, the alternative wavelength interval switching mechanisms with simple structure enable it to meet the application requirements of various occasions.

16.
Plant Physiol Biochem ; 144: 455-465, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31655344

ABSTRACT

Sugarcane is an important sugar and energy crop worldwide. It utilises highly efficient C4 photosynthesis and accumulates sucrose in its culms. The sucrose content in sugarcane culms is a quantitative trait controlled by multiple genes. The regulatory mechanism underlying the maximum sucrose level in sugarcane culms remains unclear. We used transcriptome sequences to identify the potential regulatory genes involved in sucrose accumulation in Saccarum officinarum L. cv. Badila. The sucrose accumulating internodes at the elongation and mature growth stage and the immature internodes with low sucrose content at the mature stage were used for RNA sequencing. The obtained differentially expressed genes (DEGs) related to sucrose accumulation were analysed. Results showed that the transcripts encoding invertase (beta-fructofuranosidase, EC: 3.2.1.26) which catalyses sucrose hydrolysis and 6-phosphofructokinase (PFK, EC: 2.7.1.11), a key glycolysis regulatory enzyme, were downregulated in the high sucrose accumulation internodes. The transcripts encoding key enzymes for ABA, gibberellin and ethylene synthesis were also downregulated during sucrose accumulation. Furthermore, regulated protein kinase, transcription factor and sugar transporter genes were also obtained. This research can clarify the molecular regulation network of sucrose accumulation in sugarcane.


Subject(s)
Saccharum/metabolism , Sucrose/metabolism , Transcriptome/genetics , Gene Expression Regulation, Plant/genetics , Gene Expression Regulation, Plant/physiology , Saccharum/genetics
17.
Biomed Opt Express ; 10(8): 3929-3937, 2019 Aug 01.
Article in English | MEDLINE | ID: mdl-31452985

ABSTRACT

We demonstrate label-free detection of low glucose concentration based on whispery gallery mode resonance in an optofluidic microcapillary (OFMC) biosensor. The wall surface of the OFMC is bio-chemically functionalized to detect cellular-level glucose concentration as low as 2.78 mM. The measured sensitivity is 0.966 pm/mM. The fabricated microcapillary has a thin wall thickness of 2 µm and a Q factor of 1.3 × 106, corresponding to a bulk refractive index sensitivity of 23.36 nm/RIU. The OFMC biosensor has advantages such as high resistance to environmental perturbation, small sample volume down to 90 nL and cost-effectiveness. Theoretical analysis shows the sensor sensitivity depends on the microcapillary wall thickness and liquid core refractive index.

18.
Appl Opt ; 58(12): 3091-3096, 2019 Apr 20.
Article in English | MEDLINE | ID: mdl-31044782

ABSTRACT

In this paper, a novel twist and refractive index microfiber sensor fabricated with the tapering-twisting-tapering technique has been proposed and demonstrated, for the first time to the best of our knowledge. Experimental results show that the interference intensity of the microfiber increases with the increment of pre-tapered length and the intervening twist number. The sensitivity of the microfiber sensor with respect to twist is found to be 2.817 dB/(rad/m) and the refractive index sensitivity of this microfiber sensor can reach to ∼809 nm/refractive index unit in the refractive index ranging from 1.30 to 1.33. Moreover, considering that its temperature sensitivity is 0.005 dB/°C, it will not suffer from the cross sensitivity to temperature.

19.
Opt Lett ; 43(6): 1311-1314, 2018 Mar 15.
Article in English | MEDLINE | ID: mdl-29543279

ABSTRACT

A high-sensitivity and low-temperature fiber-optic magnetic field sensor based on a tapered two-mode fiber (TTMF) sandwiched between two single-mode fibers has been proposed and demonstrated. The section of TTMF has a specifically designed transition region as an efficient tool to filter higher-order modes, where the uniform modal interferometer just involved with LP01 and LP11 modes is achieved. The transmission spectral characteristics and the magnetic response of the proposed sensors have been investigated. The experimental results show that a maximum sensitivity of 98.2 pm/Oe within a linear magnetic field intensity ranging from 0 to 140 Oe can be achieved. Significantly, the temperature cross-sensitivity problem can be resolved owing to the lower thermal expansion coefficient of the TTMF. Finally, with its low insertion loss, compactness, and ease of fabrication, the proposed sensor would find potential applications in the measurement of a magnetic field.

20.
Opt Express ; 26(3): 3098-3107, 2018 Feb 05.
Article in English | MEDLINE | ID: mdl-29401842

ABSTRACT

The mismatching between permittivities of guided mode and air limits the operation of accurately monitoring the change in the refractive index of the surrounding air. To solve it, we propose a platform using a hollow core fiber with the integration of graphene coating. Experimental results demonstrate that the anti-resonant reflecting guidance has been enhanced while it induces sharply and periodically lossy dips in the transmission spectrum. We conclude a sensitivity of -365.9 dB/RIU and a high detection limit of 2.73 × 10-6 RIU by means of interrogating the intensity of the lossy dips. We believe that this configuration opens a direction for highly sensitive sensing in researches of chemistry, medicine, and biology.

SELECTION OF CITATIONS
SEARCH DETAIL
...