Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nanomaterials (Basel) ; 13(15)2023 Aug 02.
Article in English | MEDLINE | ID: mdl-37570555

ABSTRACT

Perfluorocarbon nanodroplets (PFCnDs) are sub-micrometer emulsions composed of a surfactant-encased perfluorocarbon (PFC) liquid and can be formulated to transiently vaporize through optical stimulation. However, the factors governing repeated optical droplet vaporization (ODV) have not been investigated. In this study, we employ high-frame-rate ultrasound (US) to characterize the ODV thresholds of various formulations and imaging parameters and identify those that exhibit low vaporization thresholds and repeatable vaporization. We observe a phenomenon termed "preconditioning", where initial laser pulses generate reduced US contrast that appears linked with an increase in nanodroplet size. Variation in laser pulse repetition frequency is found not to change the vaporization threshold, suggesting that "preconditioning" is not related to residual heat. Surfactants (bovine serum albumin, lipids, and zonyl) impact the vaporization threshold and imaging lifetime, with lipid shells demonstrating the best performance with relatively low thresholds (21.6 ± 3.7 mJ/cm2) and long lifetimes (t1/2 = 104 ± 21.5 pulses at 75 mJ/cm2). Physiological stiffness does not affect the ODV threshold and may enhance nanodroplet stability. Furthermore, PFC critical temperatures are found to correlate with vaporization thresholds. These observations enhance our understanding of ODV behavior and pave the way for improved nanodroplet performance in biomedical applications.

2.
Article in English | MEDLINE | ID: mdl-30703017

ABSTRACT

Phase-change perfluorohexane nanodroplets (PFHnDs) are a new class of recondensable submicrometer-sized contrast agents that have potential for contrast-enhanced and super-resolution ultrasound imaging with an ability to reach extravascular targets. The PFHnDs can be optically triggered to undergo vaporization, resulting in spatially stationary, temporally transient microbubbles. The vaporized PFHnDs are hyperechoic in ultrasound imaging for several to hundreds of milliseconds before recondensing to their native, hypoechoic, liquid nanodroplet state. The decay of echogenicity, i.e., the dynamic behavior of the ultrasound signal from optically triggered PFHnDs in ultrasound imaging, can be captured using high-frame-rate ultrasound imaging. We explore the possibility to manipulate the echogenicity dynamics of optically triggered PFHnDs in ultrasound imaging by changing the phase of the ultrasound imaging pulse. Specifically, the ultrasound imaging system was programmed to transmit two imaging pulses with inverse polarities. We show that the imaging pulse phase can affect the amplitude and the temporal behavior of PFHnD echogenicity in ultrasound imaging. The results of this study demonstrate that the ultrasound echogenicity is significantly increased (about 78% improvement) and the hyperechoic timespan of optically triggered PFHnDs is significantly longer (about four times) if the nanodroplets are imaged by an ultrasound pulse starting with rarefactional pressure versus a pulse starting with compressional pressure. Our finding has direct and significant implications for contrast-enhanced ultrasound imaging of droplets in applications such as super-resolution imaging and molecular imaging where detection of individual or low-concentration PFHnDs is required.


Subject(s)
Fluorocarbons/chemistry , Image Processing, Computer-Assisted/methods , Nanoparticles/chemistry , Ultrasonography/methods , Contrast Media , Microbubbles , Models, Biological , Phantoms, Imaging
SELECTION OF CITATIONS
SEARCH DETAIL
...