Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 122
Filter
1.
Sci Rep ; 14(1): 13145, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38849430

ABSTRACT

Airway remodelling in lung diseases can be treated by inhibiting excessive smooth muscle cell proliferation. Zedoarondiol (Zed) is a natural compound isolated from the Chinese herb Curcuma longa. The caveolin-1 (CAV-1) is widely expressed in lung cells and plays a key role in platelet-derived growth factor (PDGF) signalling and cell proliferation. This study aims to investigate the effect of Zed on human bronchial smooth muscle cell (HBSMC) proliferation and explore its potential molecular mechanisms. We assessed the effect of Zed on the proliferation of PDGF-stimulated HBSMCs and performed proteomic analysis to identify potential molecular targets and pathways. CAV1 siRNA was used to validate our findings in vitro. In PDGF-stimulated HBSMCs, Zed significantly inhibited excessive proliferation of HBSMCs. Proteomic analysis of zedoarondiol-treated HBSMCs revealed significant enrichment of differentially expressed proteins in cell proliferation-related pathways and biological processes. Zed inhibition of HBSMC proliferation was associated with upregulation of CAV1, regulation of the CAV-1/PDGF pathway and inhibition of MAPK and PI3K/AKT signalling pathway activation. Treatment of HBSMCs with CAV1 siRNA partly reversed the inhibitory effect of Zed on HBSMC proliferation. Thus, this study reveals that zedoarondiol potently inhibits HBSMC proliferation by upregulating CAV-1 expression, highlighting its potential value in airway remodelling and related diseases.


Subject(s)
Bronchi , Caveolin 1 , Cell Proliferation , Myocytes, Smooth Muscle , Platelet-Derived Growth Factor , Signal Transduction , Humans , Caveolin 1/metabolism , Caveolin 1/genetics , Cell Proliferation/drug effects , Signal Transduction/drug effects , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/drug effects , Bronchi/metabolism , Bronchi/cytology , Bronchi/pathology , Platelet-Derived Growth Factor/metabolism , Proteomics/methods , Phosphatidylinositol 3-Kinases/metabolism , Cells, Cultured
2.
Article in English | MEDLINE | ID: mdl-38829728

ABSTRACT

A novel therapeutic approach combining acupuncture and diclofenac sodium (DS) administration was established for the potential treatment for rheumatoid arthritis (RA). DS is a commonly used anti-inflammatory and analgesic drug but has short duration and adverse effects. Acupoints are critical linkages in the meridian system and are potential candidates for drug delivery. Herein, we fabricated a DS-loaded multilayer-modified acupuncture needle (DS-MMAN) and investigated its capacity for inhibiting RA. This DS-MMAN possesses sustained release properties and in vitro anti-inflammatory effects. Experimental results showed that the DS-MMAN with microdoses can enhance analgesia and efficiently relieve joint swelling compared to the oral or intra-articular administration of DS with gram-level doses. Moreover, the combination of acupoint and DS exerts a synergistic improvement in inflammation and joint damage. Cytokine and T cell analyses in the serum indicated that the application of DS-MMAN suppressed the levels of pro-inflammatory factors and increased the levels of anti-inflammatory factors. Furthermore, the acupoint administration via DS-MMAN could decrease the accumulation of DS in the liver and kidneys, which may express better therapeutic efficiency and low toxicity. The present study demonstrated that the acupuncture needle has the potential to build a bridge between acupuncture and medication, which would be a promising alternative to the combination of traditional and modern medicine.

3.
Immun Inflamm Dis ; 12(5): e1266, 2024 May.
Article in English | MEDLINE | ID: mdl-38804848

ABSTRACT

BACKGROUND: Esophageal cancer (ESCA) is a highly invasive malignant tumor with poor prognosis. This study aimed to discover a generalized and high-sensitivity immune prognostic signature that could stratify ESCA patients and predict their overall survival, and to discover potential therapeutic drugs by the connectivity map. METHODS: The key gene modules significantly related to clinical traits (survival time and state) of ESCA patients were selected by weighted gene coexpression network analysis (WCGNA), then the univariate and least absolute shrinkage and selection operator (LASSO) Cox regression analyses were used to construct a 15-immune-related gene prognostic signature. RESULTS: The immune-related risk model was related to clinical and pathologic factors and remained an effective independent prognostic factor. Enrichment analyses revealed that the differentially expressed genes (DEGs) of the high- and low-risk groups were associated with tumor cell proliferation and immune mechanisms. Based on the gathered data, a small molecule drug named perphenazine (PPZ) was elected. The pharmacological analysis indicates that PPZ could help in adjuvant therapy of ESCA through regulation of metabolic process and cellular proliferation, enhancement of immunologic functions, and inhibition of inflammatory reactions. Furthermore, molecular docking was performed to explore and verify the PPZ-core target interactions. CONCLUSION: We succeed in structuring the immune-related prognostic model, which could be used to distinguish and predict patients' survival outcome, and screening a small molecule drug named PPZ. Prospective studies also are needed to further validate its analytical accuracy for estimating prognoses and confirm the potential use of PPZ for treating ESCA.


Subject(s)
Computational Biology , Esophageal Neoplasms , Network Pharmacology , Esophageal Neoplasms/genetics , Esophageal Neoplasms/drug therapy , Esophageal Neoplasms/immunology , Esophageal Neoplasms/mortality , Esophageal Neoplasms/diagnosis , Esophageal Neoplasms/pathology , Humans , Prognosis , Computational Biology/methods , Gene Regulatory Networks , Gene Expression Regulation, Neoplastic , Gene Expression Profiling , Biomarkers, Tumor/genetics , Molecular Docking Simulation , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/pharmacology , Male , Female
4.
Front Pharmacol ; 15: 1371929, 2024.
Article in English | MEDLINE | ID: mdl-38576483

ABSTRACT

Metabolic syndrome (MetS) is a clinical condition associated with multiple metabolic risk factors leading to type 2 diabetes mellitus and other metabolic diseases. Recent evidence suggests that modulating adipose tissue to adaptive thermogenesis may offer therapeutic potential for MetS. Xiasangju (XSJ) is a marketed drug and dietary supplement used for the treatment of metabolic disease with anti-inflammatory activity. This study investigated the therapeutic effects of XSJ and the underlying mechanisms affecting the activation of brown adipose tissue (BAT) in MetS. The results revealed that XSJ ameliorated MetS by enhancing glucose and lipid metabolism, leading to reduced body weight and abdominal circumference, decreased adipose tissue and liver index, and improved blood glucose tolerance. XSJ administration stimulated catecholamine biosynthesis, increasing noradrenaline (NA) levels and activating NA-mediated proteins in BAT. Thus, BAT enhanced thermogenesis and oxidative phosphorylation (OXPHOS). Moreover, XSJ induced changes in gut microbiota composition, with an increase in Oscillibacter abundance and a decrease in Bilophila, Candidatus Stoquefichus, Holdemania, Parasutterella and Rothia. XSJ upregulated the proteins associated with intestinal tight junctions corresponding with lower serum lipopolysaccharide (LPS), tumor necrosis factor α (TNF-α) monocyte chemoattractant protein-1 (MCP-1) and interleukin-6 (IL-6) levels to maintain NA signaling transport. In summary, XSJ may alleviate MetS by promoting thermogenesis in BAT to ultimately boost energy metabolism through increasing NA biosynthesis, strengthening intestinal barrier integrity and reducing low-grade inflammation. These findings suggest XSJ has potential as a natural therapeutic agent for the treatment of MetS.

5.
World J Gastroenterol ; 30(4): 367-380, 2024 Jan 28.
Article in English | MEDLINE | ID: mdl-38313237

ABSTRACT

BACKGROUND: L-type calcium channels are the only protein channels sensitive to calcium channel blockers, and are expressed in various cancer types. The Cancer Genome Atlas database shows that the mRNA levels of multiple L-type calcium channel subunits in esophageal squamous cell carcinoma tumor tissue are significantly higher than those in normal esophageal epithelial tissue. Therefore, we hypothesized that amlodipine, a long-acting dihydropyridine L-type calcium channel blocker, may inhibit the occurrence and development of esophageal cancer (EC). AIM: To investigate the inhibitory effects of amlodipine on EC through endoplasmic reticulum (ER) stress. METHODS: Cav1.3 protein expression levels in 50 pairs of EC tissues and corresponding paracancerous tissues were examined. Subsequently, the inhibitory effects of amlodipine on proliferation and migration of EC cells in vitro were detected using 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide and Transwell assays. In vivo experiments were performed using murine xenograft model. To elucidate the underlying mechanisms, in vitro cell studies were performed to confirm that ER stress plays a role in inhibition proliferation and migration of EC cells treated with amlodipine. RESULTS: The expression level of Cav1.3 in esophageal carcinoma was 1.6 times higher than that in paracancerous tissues. Amlodipine treatment decreased the viability of esophageal carcinoma cells in a dose- and time-dependent manner. In vivo animal experiments also clearly indicated that amlodipine inhibited the growth of EC tumors in mice. Additionally, amlodipine reduces the migration of tumor cells by inhibiting epithelial-mesenchymal transition (EMT). Mechanistic studies have demonstrated that amlodipine induces ER stress-mediated apoptosis and suppresses EMT. Moreover, amlodipine-induced autophagy was characterized by an increase in autophagy lysosomes and the accumulation of light chain 3B protein. The combination of amlodipine with the ER stress inhibitor 4-phenylbutyric acid further confirmed the role of the ER stress response in amlodipine-induced apoptosis, EMT, and autophagy. Furthermore, blocking autophagy increases the ratio of apoptosis and migration. CONCLUSION: Collectively, we demonstrate for the first time that amlodipine promotes apoptosis, induces autophagy, and inhibits migration through ER stress, thereby exerting anti-tumor effects in EC.


Subject(s)
Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , Humans , Mice , Animals , Amlodipine/pharmacology , Amlodipine/therapeutic use , Esophageal Neoplasms/pathology , Apoptosis , Cell Proliferation , Endoplasmic Reticulum Stress , Cell Line, Tumor
6.
Article in English | MEDLINE | ID: mdl-38310492

ABSTRACT

INTRODUCTION: The knowledge of barriers from the parental perspective is essential for facilitating shared decision-making in the field of pediatric asthma. METHOD: Participants who were parents of children with a diagnosis of asthma were recruited, and in-depth, semistructured interviews were conducted. The interview transcripts were analyzed thematically using framework methods. RESULTS: Seventeen participants undertook interviews. Three themes and nine subthemes emerged: (1) decision-making need level-limited understanding of decision-making knowledge, ambiguity regarding self-empowerment roles, and lack of family member support; (2) decision-making support level-insufficient ability to evaluate information, inefficient communication with health care professionals, and excessive use of professional terminology; and (3) decision-making outcome level-doubts about the final decision-making choices, time constraints on decision-making, and absence of mechanisms to track decisions made. DISCUSSION: The findings would serve as crucial foundations for the development of decision-aid programs within the context of pediatric asthma.

7.
Clin Gerontol ; : 1-19, 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38324289

ABSTRACT

OBJECTIVES: To examine the effectiveness of mindfulness-based interventions (MBIs) on psychological symptoms, motor symptoms, and quality of life in patients with Parkinson's disease (PD). METHODS: Published studies in Chinese and English languages, conducted from inception to March 2023, were identified by searching PubMed, Web of Science, Cochrane Library, CINAHL, PsycINFO, and two Chinese electronic databases. The systematic review was performed according to the Preferred Reporting Items for Systematic Reviews and Meta Analyses guidelines. RESULTS: Twelve studies were selected for quantitative syntheses. The impact of MBIs on reducing depression and anxiety, and improving mindfulness and quality of life in PD patients was statistically significant compared to the control group. However, no statistically significant effect on motor symptoms was observed. Subgroup analysis indicated that participants from Asia, those who received face-to-face sessions, and those whose sessions lasted 1.5 hours showed a more positive effect than other subgroups. CONCLUSIONS: Patients with PD may benefit from MBIs to improve psychological symptoms and quality of life. MBIs represent a pivotal non-pharmacological therapeutic approach in clinical practice. CLINICAL IMPLICATIONS: MBIs confer positive improvements in psychological well-being and quality of life in PD patients. However, it remains challenging to conclusively determine their efficacy in addressing motor symptoms.

8.
Neuroscience ; 539: 51-65, 2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38154620

ABSTRACT

Hypoxia/reoxygenation caused by chronic intermittent hypoxia (CIH) plays an important role in cognitive deficits in patients with obstructive sleep apnea. However, the precise underlying mechanism remains unclear. This study investigated whether the NOD-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome is involved in CIH-induced spatial learning and memory impairment in mice, and the possible underlying upstream and downstream mechanisms. The C57BL/6 male mice were exposed to CIH (21% O2-6% O2, 4 min/cycle, 8 h/day) for 9 weeks to investigate the role of NLRP3 in CIH-induced spatial learning and memory impairment in mice. BV2 cells were exposed to intermittent hypoxia (21% O2-1% O2, 90 min/cycle) for 48 h to investigate the possible mechanisms in vitro. We found that: 1) inhibition of NLRP3 inflammasome activation improved CIH-induced spatial learning and memory impairment in mice. 2) CIH damaged hippocampal neurons but increased the number of microglia in mice hippocampi; CIH activated microglia-specific NLRP3 inflammasome, leading to upregulation of matured IL-1ß and N-GSDMD. 3) intermittent hypoxia activated NLRP3 inflammasome via the ROS-NF-κB signaling pathway to promote the release of matured IL-1ß from microglia in a GSDMD-dependent manner without pyroptosis. 4) The IL-1ß released from microglia might impair the synaptic plasticity of hippocampal CA3-CA1 synapses by acting on IL-1 receptors in hippocampal neurons. Our findings reveal that ROS-NF-κB-NLRP3 inflammasome-GSDMD dependent IL-1ß release from microglia may participate in CIH-induced spatial learning and memory impairment by acting on hippocampal neuronal IL-1 receptor, leading to synaptic plasticity impairment.


Subject(s)
Inflammasomes , NLR Family, Pyrin Domain-Containing 3 Protein , Animals , Male , Mice , Gasdermins , Hypoxia/complications , Hypoxia/metabolism , Inflammasomes/metabolism , Mice, Inbred C57BL , Microglia/metabolism , NF-kappa B/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Phosphate-Binding Proteins/metabolism , Reactive Oxygen Species/metabolism
9.
Respir Physiol Neurobiol ; 321: 104204, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38128772

ABSTRACT

BACKGROUND: Chronic intermittent hypoxia (CIH) increases the hypoxic ventilation response (HVR). The downstream cytokine IL-1ß of the NLRP3 inflammasome regulates respiration by acting on the carotid body (CB) and neurons in the respiratory center, but the effect of the NLRP3 inflammasome on HVR induced by CIH remains unclear. OBJECTIVE: To investigate the effect of NLRP3 on the increased HVR and spontaneous apnea events and duration induced by CIH, the expression and localization of NLRP3 in the respiratory regulatory center of the rostral ventrolateral medulla (RVLM), and the effect of CIH on the activation of the NLRP3 inflammasome in the RVLM. METHODS: Eighteen male, 7-week-old C57BL/6 N mice and eighteen male, 7-week-old C57BL/6 N NLRP3 knockout mice were randomly divided into CON-WT, CON-NLRP3-/-, CIH-WT and CIH-NLRP3-/- groups. Respiratory changes in mice were continuously detected using whole-body plethysmography. The expression and localization of the NLRP3 protein and the formation of apoptosis-associated speck-like protein containing CARD (ASC) specks were detected using immunofluorescence staining. RESULTS: NLRP3 knockout reduced the increased HVR and the incidence and duration of spontaneous apnea events associated with CIH. The increase in HVR caused by CIH partially recovered after reoxygenation. After CIH, NLRP3 inflammasome activation in the RVLM, which is related to respiratory regulation after hypoxia, increased, which was consistent with the trend of the ventilation response. CONCLUSION: The NLRP3 inflammasome may be involved in the increase in the HVR and the incidence and duration of spontaneous apnea induced by CIH. NLRP3 inhibitors may help reduce the increase in the HVR after CIH, which is important for ensuring sleep quality at night in patients with obstructive sleep apnea.


Subject(s)
Inflammasomes , NLR Family, Pyrin Domain-Containing 3 Protein , Humans , Mice , Male , Animals , Inflammasomes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Apnea/complications , Mice, Inbred C57BL , Respiration , Hypoxia
10.
Chin J Nat Med ; 21(11): 812-829, 2023 Nov.
Article in English | MEDLINE | ID: mdl-38035937

ABSTRACT

Mulberry (Morus alba L.) leaf is a well-established traditional Chinese botanical and culinary resource. It has found widespread application in the management of diabetes. The bioactive constituents of mulberry leaf, specifically mulberry leaf flavonoids (MLFs), exhibit pronounced potential in the amelioration of type 2 diabetes (T2D). This potential is attributed to their ability to safeguard pancreatic ß cells, enhance insulin resistance, and inhibit α-glucosidase activity. Our antecedent research findings underscore the substantial therapeutic efficacy of MLFs in treating T2D. However, the precise mechanistic underpinnings of MLF's anti-T2D effects remain the subject of inquiry. Activation of brown/beige adipocytes is a novel and promising strategy for T2D treatment. In the present study, our primary objective was to elucidate the impact of MLFs on adipose tissue browning in db/db mice and 3T3-L1 cells and elucidate its underlying mechanism. The results manifested that MLFs reduced body weight and food intake, alleviated hepatic steatosis, improved insulin sensitivity, and increased lipolysis and thermogenesis in db/db mice. Moreover, MLFs activated brown adipose tissue (BAT) and induced the browning of inguinal white adipose tissue (IWAT) and 3T3-L1 adipocytes by increasing the expressions of brown adipocyte marker genes and proteins such as uncoupling protein 1 (UCP1) and beige adipocyte marker genes such as transmembrane protein 26 (Tmem26), thereby promoting mitochondrial biogenesis. Mechanistically, MLFs facilitated the activation of BAT and the induction of WAT browning to ameliorate T2D primarily through the activation of AMP-activated protein kinase (AMPK)/sirtuin 1 (SIRT1)/peroxisome proliferator-activated receptor-gamma coactivator 1α (PGC-1α) signaling pathway. These findings highlight the unique capacity of MLF to counteract T2D by enhancing BAT activation and inducing browning of IWAT, thereby ameliorating glucose and lipid metabolism disorders. As such, MLFs emerge as a prospective and innovative browning agent for the treatment of T2D.


Subject(s)
Diabetes Mellitus, Type 2 , Morus , Mice , Animals , Adipose Tissue, Brown , Sirtuin 1/genetics , Sirtuin 1/metabolism , Sirtuin 1/pharmacology , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/metabolism , AMP-Activated Protein Kinases/genetics , AMP-Activated Protein Kinases/metabolism , Morus/metabolism , Flavonoids/pharmacology , Flavonoids/metabolism , Prospective Studies , Signal Transduction , Adipose Tissue, White , Plant Leaves , Uncoupling Protein 1/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism
11.
J Transl Int Med ; 11(3): 234-245, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37818156

ABSTRACT

Background and Objectives: An increased risk of cardiovascular and metabolic diseases (CVMDs) among patients with cancer suggests a potential link between CVMD and cancer. The impact of CVMD on the survival time of patients with esophageal and gastric cancer remains unknown. We aimed to determine the incidence of CVMD and its impact on the longterm outcomes in esophageal and gastric cancer patients. Methods: A total of 2074 cancer patients were enrolled from January 1, 2007 to December 31, 2017 in two hospitals, including 1205 cases of esophageal cancer and 869 cases of gastric cancer, who were followed up for a median of 79.8 and 79.3 months, respectively. Survival time was analyzed using the Kaplan-Meier method before and after propensity score matching. Results: The incidence of CVMD in patients with esophageal and gastric cancer was 34.1% (411/1205) and 34.3% (298/869), respectively. The effects of hypertension, diabetes, and stroke on the long-term survival of esophageal and gastric cancer patients were not significant (all P > 0.05). The survival time was significantly longer in esophageal cancer patients without ischemic heart disease than in patients with ischemic heart disease, both before matching (36.5 vs. 29.1 months, P = 0.027) and after matching (37.4 vs. 27.9 months, P = 0.011). The survival time in gastric cancer patients without ischemic heart disease was significantly longer than in patients with ischemic heart disease, both before (28.4 vs.17.5 months, P = 0.032) and after matching (29.5 vs.17.5 months, P = 0.02). Conclusion: The survival time of esophageal and gastric cancer patients with ischemic heart disease was significantly reduced compared to that of esophageal and gastric cancer patients without ischemic heart disease.

12.
BMC Complement Med Ther ; 23(1): 308, 2023 Sep 04.
Article in English | MEDLINE | ID: mdl-37667364

ABSTRACT

BACKGROUND: Mulberry (Morus alba L.) leaf, as a medicinal and food homologous traditional Chinese medicine, has a clear therapeutic effect on type 2 diabetes mellitus (T2DM), yet its underlying mechanisms have not been totally clarified. The study aimed to explore the mechanism of mulberry leaf in the treatment of T2DM through tandem mass tag (TMT)-based quantitative proteomics analysis of skeletal muscle. METHODS: The anti-diabetic activity of mulberry leaf extract (MLE) was evaluated by using streptozotocin-induced diabetic rats at a dose of 4.0 g crude drug /kg p.o. daily for 8 weeks. Fasting blood glucose, body weight, food and water intake were monitored at specific intervals, and oral glucose tolerance test and insulin tolerance test were conducted at the 7th and 8th week respectively. At the end of the experiment, levels of glycated hemoglobin A1c, insulin, free fat acid, leptin, adiponectin, total cholesterol, triglyceride, low-density lipoprotein cholesterol, and high-density lipoprotein cholesterol were assessed and the pathological changes of rat skeletal muscle were observed by HE staining. TMT-based quantitative proteomic analysis of skeletal muscle and bioinformatics analysis were performed and differentially expressed proteins (DEPs) were validated by western blot. The interactions between the components of MLE and DEPs were further assessed using molecular docking. RESULTS: After 8 weeks of MLE intervention, the clinical indications of T2DM such as body weight, food and water intake of rats were improved to a certain extent, while insulin sensitivity was increased and glycemic control was improved. Serum lipid profiles were significantly reduced, and the skeletal muscle fiber gap and atrophy were alleviated. Proteomic analysis of skeletal muscle showed that MLE treatment reversed 19 DEPs in T2DM rats, regulated cholesterol metabolism, fat digestion and absorption, vitamin digestion and absorption and ferroptosis signaling pathways. Key differential proteins Apolipoprotein A-1 (ApoA1) and ApoA4 were successfully validated by western blot and exhibited strong binding activity to the MLE's ingredients. CONCLUSIONS: This study first provided skeletal muscle proteomic changes in T2DM rats before and after MLE treatment, which may help us understand the molecular mechanisms, and provide a foundation for developing potential therapeutic targets of anti-T2DM of MLE.


Subject(s)
Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 2 , Morus , Animals , Rats , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Experimental/drug therapy , Molecular Docking Simulation , Proteomics , Insulin , Body Weight , Cholesterol, HDL , Plant Extracts/pharmacology
13.
Nurs Open ; 10(10): 6856-6865, 2023 10.
Article in English | MEDLINE | ID: mdl-37461183

ABSTRACT

AIM: In response to the ageing population and shortage of human resources for nursing care, China is piloting internet-based nursing services (nurses who provide this care are called online nurses). Nurses are the providers of this model, so it is important to understand their perceptions. We aim to explore nurses' perceptions of engaging in internet-based nursing services. DESIGN: This study is descriptive qualitative research, so the data were analysed using a descriptive qualitative research method based on the theory of planned behaviour, using thematic analysis. METHODS: With personal semi-structured interviews conducted by two Master of Science in Nursing with 18 online nurses and nine clinical nurses, terminated after information saturation. RESULTS: Nurses' emotional attitudes towards internet-based nursing services were generally positive, but their behavioural intentions were negative. Social support, hospital organisational climate and family responsibilities had a statistically significant impact on nurses' behavioural decisions. Internet-based nursing services place higher demands on nurses' knowledge and skills, and nurses are most concerned with ensuring patient and nurse safety. PATIENT OR PUBLIC CONTRIBUTION: No Patient or Public Contribution.


Subject(s)
Nurses , Nursing Services , Humans , Clinical Competence , Hospitals , China , Qualitative Research
14.
Sleep Med ; 107: 268-280, 2023 07.
Article in English | MEDLINE | ID: mdl-37263079

ABSTRACT

Lung adenocarcinoma (LUAD) is a highly invasive malignant tumor with poor prognosis, and there is growing evidence that obstructive sleep apnea (OSA) could significantly promotes the risk of LUAD. In order to improve the treatment outcomes of patients with LUAD and OSA, we aim to screen OSA-related genes that may potentially affect LUAD and to discover a high sensitivity prognostic signature that can stratify LUAD/OSA patients and to further accurately identify LUAD patients who might respond to immunotherapy. Molecular subtypes classified by the prognostic signature did not belong to any previously reported subtypes of LUAD. The tumor microenvironment (TME), mutation, and so on, were significantly distinct between patients within different risk groups or clusters. Combined with gene set variation analysis (GSVA) and drug susceptibility analysis, patients in the low-risk group (The vast majority of patients belonging to cluster2 by molecular subtyping) were not suitable for immunotherapy due to T-cell exhaustion caused by long-term inflammatory response; the question of how to reverse T-cell exhaustion may be a primary consideration. Cluster3 patients had the highest benefit from immunotherapy, and although cluster1 patients had the worst prognosis, they were more sensitive to traditional chemotherapeutic drugs. Animal experiments showed that chronic intermittent hypoxia (CIH) could not only significantly promote the tumor growth of LUAD, but also increase the expression levels of risk genes. This risk model may contribute greatly to the evaluation of prognosis, molecular characteristics, and treatment modalities of LUAD/OSA, and could be further translated into clinical applications to ameliorate the treatment dilemmas.


Subject(s)
Adenocarcinoma of Lung , Lung Neoplasms , Sleep Apnea, Obstructive , Animals , Immunotherapy , Adenocarcinoma of Lung/genetics , Hypoxia , Sleep Apnea, Obstructive/complications , Sleep Apnea, Obstructive/genetics , Sleep Apnea, Obstructive/therapy , Lung Neoplasms/genetics , Lung Neoplasms/therapy , Prognosis , Tumor Microenvironment/genetics
15.
Chin Med ; 18(1): 49, 2023 May 05.
Article in English | MEDLINE | ID: mdl-37147692

ABSTRACT

PURPOSE: The purpose of this study is to investigate the relationship between the susceptibility to type 2 diabetes and gut microbiota in rats and to explore the potential mechanism involved. METHODS: Thirty-two SPF-grade SD rats were raised as donor rats, and divided into control, type 2 diabetes mellitus (T2DM, fasting blood glucose ≥ 11.1 mmol/L), and Non-T2DM (fasting blood glucose < 11.1 mmol/L) groups. Feces were collected and prepared as fecal bacteria supernatants Diab (fecal bacteria supernatant of T2DM group rats), Non (fecal bacteria supernatant of Non-T2DM group rats), and Con (fecal bacteria supernatant of control group rats). Another seventy-nine SPF-grade SD rats were separated into normal saline (NS) and antibiotics (ABX) groups and given normal saline and antibiotics solutions, respectively. In addition, the ABX group rats were randomly separated into ABX-ord (fed with a 4-week ordinary diet), ABX-fat (fed with a 4-week high-fat diet and STZ ip), FMT-Diab (with transplanted fecal bacteria supernatant Diab and fed with a 4-week high-fat diet and STZ ip), FMT-Non (with transplanted fecal bacteria supernatant Non and fed with a 4-week high-fat diet and STZ ip), and FMT-Con (with transplanted fecal bacteria supernatant Con and fed with a 4-week high-fat diet and STZ ip) groups. Furthermore, the NS group was randomly divided into NS-ord (fed with a 4-week ordinary diet) and NS-fat (fed with a 4-week high-fat diet and STZ ip) groups. After this, the short-chain fatty acids (SCFAs) in the feces were detected using gas chromatography, and the gut microbiota were detected using 16S rRNA gene sequencing. Finally, G protein-coupled receptor 41 (GPR41) and GPR43 were detected by western blot and quantitative real-time polymerase chain reaction. RESULTS: G__Ruminococcus_gnavus_group were more abundant in the FMT-Diab group compared to the ABX-fat and FMT-Non groups. The levels of blood glucose, serum insulin, total cholesterol, triglycerides, and low-density lipoprotein cholesterol were also higher in the FMT-Diab group compared to those of the ABX-fat group. Compared to the ABX-fat group, both the FMT-Diab and FMT-Non groups had higher contents of acetic and butyric acid, and the expression of GPR41/43 were significantly higher as well. CONCLUSIONS: G__Ruminococcus_gnavus_group might make rats more susceptible to T2DM; T2DM-susceptible flora transplantation increased the susceptibility to T2DM in rats. Additionally, gut microbiota-SCFAs-GPR41/43 may play a role in the development of T2DM. Lowering blood glucose by regulating gut microbiota may therefore become a new strategy for the treatment of T2DM in humans.

16.
Support Care Cancer ; 31(4): 214, 2023 Mar 15.
Article in English | MEDLINE | ID: mdl-36918480

ABSTRACT

PURPOSE: Currently, the choice of contralateral prophylactic mastectomy (CPM) for breast cancer patients is variable and controversial. Breast cancer patients must make complex and rapid decisions based on the benefits and risks of CPM. Although there are many qualitative studies on the decision-making experiences of breast cancer patients, there is a lack of synthesis of these qualitative studies. Our study goals were to conduct a meta-synthesis of qualitative studies on the decision-making experiences, real-life experiences, psychological feelings and needs of breast cancer patients in CPM decision-making, with the aim of providing information to support the development of CPM practice decisions. METHODS: Using a meta-ethnographic approach, qualitative research studies were analysed and synthesised using the method of "reciprocal translational analysis", and themes related to the decision-making experiences of breast cancer patients with respect to CPM were identified. RESULTS: Five hundred ninety-three documents were retrieved. This meta-synthesis ultimately collected 8 studies. Four themes were identified: (1) decision motivations for survival and body intention; (2) negative and vacillating decision emotions; (3) diverse but weak decision support; (4) short-term satisfaction but long-term unknown and differentiated decision effects. CONCLUSIONS: We found that although patients had different feelings about the effects of CPM in detail, most patients were satisfied with the short-term effects of CPM, but the long-term effects of CPM were still unknown. The study protocol was registered with PROSPERO (International prospective register of systematic reviews) in May 2022 (Registration number: CRD42022334260).


Subject(s)
Breast Neoplasms , Prophylactic Mastectomy , Female , Humans , Breast Neoplasms/surgery , Breast Neoplasms/psychology , Decision Making , Mastectomy/psychology , Prophylactic Mastectomy/psychology , Qualitative Research
17.
Auton Neurosci ; 244: 103053, 2023 01.
Article in English | MEDLINE | ID: mdl-36463578

ABSTRACT

BACKGROUND: The superior cervical ganglion (SCG) plays critical roles in the regulation of blood pressure and cardiac output. Metabotropic glutamate receptors (mGluRs) in the SCG are not clearly elucidated yet. Most studies on the expression and functions of mGluRs in the SCG focused on the cultured SCG neurons, and yet little information has been reported in the SCG tissue. Chronic intermittent hypoxia (CIH), one of the major clinical features of obstructive sleep apnea (OSA) patients, is a critical pathological cause of secondary hypertension in OSA patients, but its impact on the level of mGluRs in the SCG is unknown. OBJECTIVE: To explore the expression and localization of mGluR2/3 and the effect of CIH on mGluR2/3 level in rat SCG tissue. METHODS: RT-PCR and immunostaining were conducted to examine the mRNA and protein expression of mGluR2/3 in rat SCG. Immunofluorescence staining was conducted to examine the distribution of mGluR2/3. Rats were divided into control and CIH group which the rats were exposed to CIH for 6 weeks. Western blots were performed to examine the level of mGluR2/3 in rat SCG. RESULTS: mRNAs of mGluR2/3 expressed in rat SCG. mGluR2 distributed in principal neurons and small intensely fluorescent cells but not in satellite glial cells, nerve fibers, and vascular endothelial cells; mGluR3 was detected in nerve fibers rather than in the cells mentioned above. CIH exposure reduced the protein level of mGluR2/3 in rat SCG. CONCLUSION: mGluR2/3 exists in rat SCG with diverse distribution patterns, and may be involved in CIH-induced hypertension.


Subject(s)
Hypertension , Receptors, Metabotropic Glutamate , Sleep Apnea, Obstructive , Superior Cervical Ganglion , Animals , Rats , Endothelial Cells/metabolism , Hypertension/metabolism , Receptors, Metabotropic Glutamate/genetics , Receptors, Metabotropic Glutamate/metabolism , RNA, Messenger/metabolism , Sleep Apnea, Obstructive/metabolism , Superior Cervical Ganglion/metabolism , Hypoxia/metabolism
18.
World J Gastrointest Oncol ; 14(12): 2340-2352, 2022 Dec 15.
Article in English | MEDLINE | ID: mdl-36568944

ABSTRACT

BACKGROUND: Esophageal squamous cell carcinoma (ESCC), the predominant type of esophageal cancer, has a 5-year survival rate less than 20%. Although the cause of poor prognosis is the high incidence and mortality of ESCC, the high rate of metastasis after esophageal cancer surgery is the main cause of death after the surgery. Bromodomain-containing protein 4 (BRD4), an epigenetic reader of chromatin-acetylated histones in tumorigenesis and development, plays an essential role in regulating oncogene expression. BRD4 inhibition and BRD4 inhibition-based treatment can potentially suppress ESCC growth. However, the effects and mechanisms of action of BRD4 on ESCC cell migration remain unclear. AIM: To explore the effect of BRD4 on cell migration of ESCC in vitro and its possible molecular mechanism. METHODS: Human ESCC cell lines KYSE-450 and KYSE-150 were used. The 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide assay was performed to examine cell proliferation, and the transwell migration assay was conducted to test ESCC cell migration. JQ1, a BRD4 inhibitor, was applied to cells, and BRD4 siRNA was transfected into ESCC cells to knockdown endogenous BRD4. GFP-RFP-LC3 adenovirus was infected into ESCC cells to evaluate the effect of JQ1 on autophagy. Western blotting was performed to determine the protein levels of BRD4, E-cadherin, vimentin, AMP-activated protein kinase (AMPK), and p-AMPK. RESULTS: BRD4 was either downregulated by small interfering RNA or pretreated with JQ1 in ESCC cells, leading to increased tumor migration in ESCC cells in a dose- and time-dependent manner. Inhibition of BRD4 not only significantly suppressed cell proliferation but also strongly increased cell migration by inducing epithelial-mesenchymal transition (EMT). The protein expression of vimentin was increased and E-cadherin decreased in a dose-dependent manner, subsequently promoting autophagy in KYSE-450 and KYSE-150 cells. Pretreatment with JQ1, a BRD4 inhibitor, inhibited BRD4-induced LC3-II activation and upregulated AMPK phosphorylation in a dose-dependent manner. Additionally, an increased number of autophagosomes and autolysosomes were observed in JQ1-treated ESCC cells. The autophagy inhibitor 3-methyladenine (3-MA) reversed the effects of BRD4 knockdown on ESCC cell migration and blocked JQ1-induced cell migration. 3-MA also downregulated the expression of vimentin and upregulation E-cadherin. CONCLUSION: BRD4 inhibition enhances cell migration by inducing EMT and autophagy in ESCC cells via the AMPK-modified pathway. Thus, the facilitating role on ESCC cell migration should be considered for BRD4 inhibitor clinical application to ESCC patients.

19.
Zhongguo Ying Yong Sheng Li Xue Za Zhi ; 38(4): 317-321, 2022 Jul.
Article in Chinese | MEDLINE | ID: mdl-36414554

ABSTRACT

Objective: To investigate the effects of 5-tetradecanoxy 2-furanic acid (TOFA) on cell proliferation, cell cycle and apoptosis of esophageal squamous cell carcinoma (ESCC) cells. Methods: Eca-109 cells and KYSE-450 cells were divided into control group (DMSO) and experimental group (TOFA), respectively. The cells (4×103 cells/100 µl) were inoculated into 96-well plates with 5 multiple wells at each concentration. After 24 h culture, cells were treated with DMSO or different concentrations (1, 3, 5, 10 µg/ ml) of TOFA for 24, 48 and 72 h. Cell proliferation was detected by MTT, cell cycle and apoptosis were detected by flow cytometry, the expression levels of p21 and Cleaved caspase-3 and modification levels of p-Akt, p-mTOR and p-4EBP1 were detected by Western blot, and intracellular free fatty acids were detected by special kits. Results: MTT results showed that TOFA inhibited the proliferation of Eca109 and KYSE-450 cells in a concentration and time dependent manner (all P<0.05), with IC50 of 4.65 µg/ml and 3.93 µg/ml for 48 h, respectively. Flow cytometry results showed that compared with DMSO group, the percentage of cells in G2/M phase was increased and the apoptosis rate was increased in the experimental group. Western blotting results showed that compared with DMSO group, p21 and Cleaved caspase-3 protein expression levels were up-regulated, and p-AKT, p-mTOR and p-4EBP1 protein expression levels were down-regulated (all P<0.05). Conclusion: TOFA inhibits the proliferation, blocks the cycle progression and promotes apoptosis of ESCC, the mechanism may be related to the AKT/mTOR/4EBP1 signaling pathway.


Subject(s)
Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , Humans , Esophageal Squamous Cell Carcinoma/metabolism , Esophageal Squamous Cell Carcinoma/pathology , Caspase 3 , Esophageal Neoplasms/pathology , Proto-Oncogene Proteins c-akt/metabolism , Dimethyl Sulfoxide , Cell Line, Tumor , TOR Serine-Threonine Kinases/metabolism
20.
Front Physiol ; 13: 1008073, 2022.
Article in English | MEDLINE | ID: mdl-36213225

ABSTRACT

The carotid body (CB) contributes significantly to oxygen sensing. It is unclear, however, whether glutamatergic signaling is involved in the CB response to hypoxia. Previously, we reported that ionotropic glutamate receptors (iGluRs) and multiple glutamate transporters are present in the rat CB. Except for iGluRs, glutamate receptors also include metabotropic glutamate receptors (mGluRs), which are divided into the following groups: Group I (mGluR1/5); group II (mGluR2/3); group III (mGluR4/6/7/8). We have studied the expression of group I mGluRs in the rat CB and its physiological function response to acute hypoxia. To further elucidate the states of mGluRs in the CB, this study's aim was to investigate the expression of group II and III mGluRs and the response of rat CB to acute hypoxia. We used reverse transcription-polymerase chain reaction (RT-PCR) to observed mRNA expression of GRM2/3/4/6/7/8 subunits by using immunostaining to show the distribution of mGluR2 and mGluR8. The results revealed that the GRM2/3/4/6/7/8 mRNAs were expressed in both rat and human CB. Immunostaining showed that mGluR2 was localized in the type I cells and mGluR8 was localized in type I and type II cells in the rat CB. Moreover, the response of CB to acute hypoxia in rats was recorded by in vitro carotid sinus nerve (CSN) discharge. Perfusion of group II mGluRs agonist or group III mGluRs agonist (LY379268 or L-SOP) was applied to examine the effect of group II and III mGluRs on rat CB response to acute hypoxia. We found that LY379268 and L-SOP inhibited hypoxia-induced enhancement of CSN activity. Based on the above findings, group II and III mGluRs appear to play an inhibitory role in the carotid chemoreceptor response to acute hypoxia.

SELECTION OF CITATIONS
SEARCH DETAIL
...