Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 54
Filter
1.
Chemosphere ; 341: 140040, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37673188

ABSTRACT

Chronic kidney disease (CKD) is an inflammatory disease characterized by the deterioration of renal function, which imposes a significant burden on the healthcare system. In the recent decades, the ageing of the population and the increase of ozone pollution have accelerated. However, epidemiological associations between long-term ozone exposure and renal function in susceptible populations are understudied. In this study, we aimed to investigate the association of 1 y ozone exposure with renal function among the older adults in Xiamen City, China. We recruited 6024 eligible participants with a median age of 65.00 years, estimated their ozone exposure data, and collected questionnaires on demographic status and lifestyle factors as well as information on healthcare access. A generalized linear model was used to assess the association. An increase of 10 µg/m3 of 1 y ozone exposure was negatively associated with the estimated glomerular filtration rate (eGFR) [-3.12 (95% CI: -4.76, -1.48)]. The associations were stronger in men, non-smokers, and those with hypertension or T2DM. Clinical indicators of high-density lipoprotein, low-density lipoprotein, triglycerides, and total cholesterol were the main mediators to regulate the ozone-renal function association. Our results suggested that long-term ozone exposure is a potential risk factor for renal function in Chinese middle-aged and elderly adults.


Subject(s)
East Asian People , Environmental Exposure , Ozone , Renal Insufficiency, Chronic , Aged , Humans , Male , Middle Aged , Aging , Asian People , Glomerular Filtration Rate , Ozone/toxicity
2.
Ann Med ; 55(2): 2246474, 2023.
Article in English | MEDLINE | ID: mdl-37604118

ABSTRACT

OBJECTIVE: This study aims to estimate the transmissibility of norovirus outbreaks in schools by different transmission routes, and to evaluate the effects of isolation, school-closure and disinfection measures under different intervention intensities, finally, scientific prevention and control suggestions are proposed. METHOD: 23 outbreaks of norovirus infectious diarrhea occurring in Jiangsu Province's school from 2012-2018 were selected and fitted to the model. The data includes various types of school places and pathogen genotype. A 'SEIAQRW' model with two transmission routes was established. The transmissibility of each outbreak was assessed using effective reproduction number, the efficacy of different intervention measures and intensities were evaluated by calculating the total attack rate and peak incidence. RESULTS: The mean effective reproduction number of noroviruses was estimated to be 8.92 for the human-to-human route of transmission and 2.19 for the water or food-to-human route of transmission. When all symptomatic cases were isolated, the median peak incidence for both transmission routes both being less than 1.8%. There was a smaller reduction in total attack rate compared to peak incidence, the median total attack rate for the two transmission routes decreased by 17.59% and 42.09%, respectively. When the effect of school-closure or disinfection is more than 90%, the total attack rate and peak incidence in the human-to-human route are reduced by more than 90% compared to no intervention, and the peak incidence in the water or food-to-human routes can be reduced to less than 1.4%, but the reduction in the total attack rate is only 50% or so. CONCLUSION: Norovirus outbreaks have a high rate of transmission in schools. In the case of norovirus outbreaks, isolation should be complemented by other interventions, and the implementation of high-intensity school closures or disinfection of the external environment can be effective in reducing the spread of the virus.


Subject(s)
Norovirus , Humans , Genotype , Schools , Water
3.
Epidemics ; 44: 100707, 2023 09.
Article in English | MEDLINE | ID: mdl-37480747

ABSTRACT

OBJECTIVE: Multiple human papillomavirus (HPV)-associated diseases have put a significant disease burden on the world. Therefore, we conducted a study to explore the epidemiological characteristics of HPV and the transmissibility of its genotypes. METHODS: HPV testing data was collected from Hospital. A transmission dynamics model of HPV was constructed to simulate and compare the transmissibility of different HPV genotypes, which was quantitatively described by the basic reproduction number (R0). RESULTS: The collected HPV subjects were mainly from Xiamen City, Zhangzhou City and Quanzhou City, together, they are known as the Hokkien golden triangle. There were variations in the distribution of HPV infections by age groups. Among all HPV genotypes, 13 of them had R0 > 1, with 10 of them being high-risk types. The top five were HPV56, 18, 58, 52 and 53, among which, HPV56, 18, 58 and 42 were of high risk, whereas HPV53 was not, and the R0 values for the five were 3.35 (CI: 0.00-9.99), 3.20 (CI: 0.00-6.46), 3.19 (CI: 1.27-6.94), 3.19 (CI: 1.01-8.42) and 2.99 (CI: 0.00-9.39), respectively. In addition, HPV52 had R0 > 1 for about 51 months, which had the longest duration. CONCLUSION: Most high-risk HPV types in the Hokkien golden triangle could transmit among the population. Therefore, there is a need of further optimization for developing HPV vaccines and better detection methods in the region.


Subject(s)
Papillomavirus Infections , Humans , Retrospective Studies , Papillomavirus Infections/epidemiology , Papillomavirus Infections/genetics , Human Papillomavirus Viruses , China/epidemiology
4.
Infect Dis Model ; 8(1): 270-281, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36846047

ABSTRACT

Although studies have compared the relative severity of Omicron and Delta variants by assessing the relative risks, there are still gaps in the knowledge of the potential COVID-19 burden these variations may cause. And the contact patterns in Fujian Province, China, have not been described. We identified 8969 transmission pairs in Fujian, China, by analyzing a contact-tracing database that recorded a SARS-CoV-2 outbreak in September 2021. We estimated the waning vaccine effectiveness against Delta variant infection, contact patterns, and epidemiology distributions, then simulated potential outbreaks of Delta and Omicron variants using a multi-group mathematical model. For instance, in the contact setting without stringent lockdowns, we estimated that in a potential Omicron wave, only 4.7% of infections would occur in Fujian Province among individuals aged >60 years. In comparison, 58.75% of the death toll would occur in unvaccinated individuals aged >60 years. Compared with no strict lockdowns, combining school or factory closure alone reduced cumulative deaths of Delta and Omicron by 28.5% and 6.1%, respectively. In conclusion, this study validates the need for continuous mass immunization, especially among elderly aged over 60 years old. And it confirms that the effect of lockdowns alone in reducing infections or deaths is minimal. However, these measurements will still contribute to lowering peak daily incidence and delaying the epidemic, easing the healthcare system's burden.

5.
Int J Infect Dis ; 134: 78-87, 2023 Sep.
Article in English | MEDLINE | ID: mdl-36736993

ABSTRACT

OBJECTIVES: The Omicron BA.2 variant is probably the main epidemic strain worldwide at present. Comparing the epidemiological characteristics, transmissibility, and influencing factors of SARS-CoV-2, the results obtained in this paper will help to provide theoretical support for disease control. METHODS: This study was a historical information analysis, using the R programming language and SPSS 24.0 for statistical analysis. The Geoda and Arc GIS were used for spatial autocorrelation analysis. RESULTS: Local spatial autocorrelations of the incidence rate were observed in Delta and Omicron BA.1 outbreaks, whereas Omicron BA.2 outbreaks showed a random distribution in incidence rate. The time-dependent reproduction number of Delta, Omicron BA.1, and Omicron BA.2 were 3.21, 4.29, and 2.96, respectively, and correspondingly, the mean serial interval were 4.29 days (95% confidence interval [CI]: 0.37-8.21), 3.84 days (95% CI: 0-8.37), and 2.77 days (95% CI: 0-5.83). The asymptomatic infection rate of cases in Delta, Omicron BA.1, and Omicron BA.2 outbreaks were 21.71%, 6.25%, and 4.35%, respectively. CONCLUSION: The Omicron BA.2 variant had the greatest serial interval, transmissibility, and transmission speed, followed by BA.1, and then Delta. Compared with Delta and Omicron BA.1 variants, the Omicron BA.2 variant may be less pathogenic and more difficult to control than Omicron BA.1 and Delta.


Subject(s)
COVID-19 , Epidemics , Humans , COVID-19/epidemiology , Disease Outbreaks , SARS-CoV-2 , Virulence
6.
Biomimetics (Basel) ; 7(3)2022 Sep 05.
Article in English | MEDLINE | ID: mdl-36134929

ABSTRACT

Adhesion robots have broad application prospects in the field of spacecraft inspection, repair, and maintenance, but the stable adhesion and climbing on the flexible surface covering the spacecraft has not been achieved. The flexible surface is easily deformed when subjected to external force, which makes it difficult to ensure a sufficient contact area and then detach from it. To achieve stable attachment and easy detachment on the flexible surface under microgravity, an adhesion model is established based on the applied adhesive material, and the relationship between peeling force and the rigidity of the base material, peeling angle, and working surface stiffness is obtained. Combined with the characteristics of variable stiffness structure, the adhesion and detachment force of the foot is asymmetric. Inspired by the adhesion-detachment mechanism of the foot of the gecko, an active adhesion-detachment control compliant mechanism is designed to achieve the stable attachment and safe detachment of the foot on the flexible surface and to adapt to surfaces with different rigidity. The experimental results indicate that a maximum normal adhesion force of 7.66 N can be generated when fully extended, and the safe detachment is achieved without external force on a flexible surface. Finally, an air floating platform is used to build a microgravity environment, and the crawling experiment of a gecko-inspired robot on a flexible surface under microgravity is completed. The experimental results show that the gecko-inspired foot with variable stiffness can satisfy the requirements of stable crawling on flexible surfaces.

7.
Front Public Health ; 10: 887146, 2022.
Article in English | MEDLINE | ID: mdl-35910883

ABSTRACT

Background: In September 2021, there was an outbreak of coronavirus disease 2019 (COVID-19) in Xiamen, China. Various non-pharmacological interventions (NPIs) and pharmacological interventions (PIs) have been implemented to prevent and control the spread of the disease. This study aimed to evaluate the effectiveness of various interventions and to identify priorities for the implementation of prevention and control measures. Methods: The data of patients with COVID-19 were collected from 8 to 30 September 2021. A Susceptible-Exposed-Infectious-Recovered (SEIR) dynamics model was developed to fit the data and simulate the effectiveness of interventions (medical treatment, isolation, social distancing, masking, and vaccination) under different scenarios. The effective reproductive number (Reff ) was used to assess the transmissibility and transmission risk. Results: A total of 236 cases of COVID-19 were reported in Xiamen. The epidemic curve was divided into three phases (Reff = 6.8, 1.5, and 0). Notably, the cumulative number of cases was reduced by 99.67% due to the preventive and control measures implemented by the local government. In the effective containment stage, the number of cases could be reduced to 115 by intensifying the implementation of interventions. The total number of cases (TN) could be reduced by 29.66-95.34% when patients voluntarily visit fever clinics. When only two or three of these measures are implemented, the simulated TN may be greater than the actual number. As four measures were taken simultaneously, the TN may be <100, which is 57.63% less than the actual number. The simultaneous implementation of five interventions could rapidly control the transmission and reduce the number of cases to fewer than 25. Conclusion: With the joint efforts of the government and the public, the outbreak was controlled quickly and effectively. Authorities could promptly cut the transmission chain and control the spread of the disease when patients with fever voluntarily went to the hospital. The ultimate effect of controlling the outbreak through only one intervention was not obvious. The combined community control and mask wearing, along with other interventions, could lead to rapid control of the outbreak and ultimately lower the total number of cases. More importantly, this would mitigate the impact of the outbreak on society and socioeconomics.


Subject(s)
COVID-19 , Basic Reproduction Number , COVID-19/epidemiology , COVID-19/prevention & control , China/epidemiology , Disease Outbreaks/prevention & control , Humans , SARS-CoV-2
8.
Infect Dis Model ; 7(2): 161-178, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35662902

ABSTRACT

Objective: In China, the burden of shigellosis is unevenly distributed, notably across various ages and geographical areas. Shigellosis temporal trends appear to be seasonal. We should clarify seasonal warnings and regional transmission patterns. Method: This study adopted a Logistic model to assess the seasonality and a dynamics model to compare the transmission in different areas. The next-generation matrix was used to calculate the effective reproduction number (R eff) to quantify the transmissibility. Results: In China, the rate of shigellosis fell from 35.12 cases per 100,000 people in 2005 to 7.85 cases per 100,000 people in 2017, peaking in June and August. After simulation by the Logistic model, the 'peak time' is mainly concentrated from mid-June to mid-July. China's 'early warning time' is primarily focused on from April to May. We predict the 'peak time' of shigellosis is the 6.30th month and the 'early warning time' is 3.87th month in 2021. According to the dynamics model results, the water/food transfer pathway has been mostly blocked off. The transmissibility of different regions varies greatly, such as the mean R eff of Longde County (3.76) is higher than Xiamen City (3.15), higher than Chuxiong City (2.52), and higher than Yichang City (1.70). Conclusion: The 'early warning time' for shigellosis in China is from April to May every year, and it may continue to advance in the future, such as the early warning time in 2021 is in mid-March. Furthermore, we should focus on preventing and controlling the person-to-person route of shigellosis and stratified deploy prevention and control measures according to the regional transmission.

9.
Infect Dis Model ; 7(2): 196-210, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35702140

ABSTRACT

Objectives: Computing the basic reproduction number (R 0) in deterministic dynamical models is a hot topic and is frequently demanded by researchers in public health. The next-generation methods (NGM) are widely used for such computation, however, the results of NGM are usually not to be the true R 0 but only a threshold quantity with little interpretation. In this paper, a definition-based method (DBM) is proposed to solve such a problem. Methods: Start with the definition of R 0, consider different states that one infected individual may develop into, and take expectations. A comparison with NGM has proceeded. Numerical verification is performed using parameters fitted by data of COVID-19 in Hunan Province. Results: DBM and NGM give identical expressions for single-host models with single-group and interactive R ij of single-host models with multi-groups, while difference arises for models partitioned into subgroups. Numerical verification showed the consistencies and differences between DBM and NGM, which supports the conclusion that R 0 derived by DBM with true epidemiological interpretations are better. Conclusions: DBM is more suitable for single-host models, especially for models partitioned into subgroups. However, for multi-host dynamic models where the true R 0 is failed to define, we may turn to the NGM for the threshold R 0.

10.
Sci Rep ; 12(1): 4103, 2022 03 08.
Article in English | MEDLINE | ID: mdl-35260706

ABSTRACT

Hand, foot, and mouth disease (HFMD) is a serious disease burden in the Asia-Pacific region, including China. This study calculated the transmissibility of HFMD at county levels in Jiangsu Province, China, analyzed the differences of transmissibility and explored the possible influencing factors of its transmissibility. We built a mathematical model for seasonal characteristics of HFMD, estimated the effective reproduction number (Reff), and compared the incidence rate and transmissibility in different counties using non-parametric tests, rapid cluster analysis and rank-sum ratio in 97 counties in Jiangsu Province from 2015 to 2020. The average daily incidence rate was between 0 and 4 per 100,000 people in Jiangsu Province from 2015-2020. The Quartile of Reff in Jiangsu Province from 2015 to 2020 was 1.54 (0.49, 2.50). Rugao District and Jianhu District had the highest transmissibility according to the rank-sum ratio. Reff generally decreased in 2017 and increased in 2018 in most counties, and the median level of Reff was the lowest in 2017 (P < 0.05). The transmissibility was different in 97 counties in Jiangsu Province. The reasons for the differences may be related to the climate, demographic characteristics, virus subtypes, vaccination, hygiene and other infectious diseases.


Subject(s)
Hand, Foot and Mouth Disease , China/epidemiology , Climate , Cluster Analysis , Hand, Foot and Mouth Disease/epidemiology , Humans , Incidence
11.
Front Public Health ; 10: 813860, 2022.
Article in English | MEDLINE | ID: mdl-35321194

ABSTRACT

Introduction: Modeling on infectious diseases is significant to facilitate public health policymaking. There are two main mathematical methods that can be used for the simulation of the epidemic and prediction of optimal early warning timing: the logistic differential equation (LDE) model and the more complex generalized logistic differential equation (GLDE) model. This study aimed to compare and analyze these two models. Methods: We collected data on (coronavirus disease 2019) COVID-19 and four other infectious diseases and classified the data into four categories: different transmission routes, different epidemic intensities, different time scales, and different regions, using R2 to compare and analyze the goodness-of-fit of LDE and GLDE models. Results: Both models fitted the epidemic curves well, and all results were statistically significant. The R2 test value of COVID-19 was 0.924 (p < 0.001) fitted by the GLDE model and 0.916 (p < 0.001) fitted by the LDE model. The R2 test value varied between 0.793 and 0.966 fitted by the GLDE model and varied between 0.594 and 0.922 fitted by the LDE model for diseases with different transmission routes. The R2 test values varied between 0.853 and 0.939 fitted by the GLDE model and varied from 0.687 to 0.769 fitted by the LDE model for diseases with different prevalence intensities. The R2 test value varied between 0.706 and 0.917 fitted by the GLDE model and varied between 0.410 and 0.898 fitted by the LDE model for diseases with different time scales. The GLDE model also performed better with nation-level data with the R2 test values between 0.897 and 0.970 vs. 0.731 and 0.953 that fitted by the LDE model. Both models could characterize the patterns of the epidemics well and calculate the acceleration weeks. Conclusion: The GLDE model provides more accurate goodness-of-fit to the data than the LDE model. The GLDE model is able to handle asymmetric data by introducing shape parameters that allow it to fit data with various distributions. The LDE model provides an earlier epidemic acceleration week than the GLDE model. We conclude that the GLDE model is more advantageous in asymmetric infectious disease data simulation.


Subject(s)
COVID-19 , Communicable Diseases , Epidemics , COVID-19/epidemiology , Communicable Diseases/epidemiology , Humans , Logistic Models , Public Health
12.
Travel Med Infect Dis ; 45: 102243, 2022.
Article in English | MEDLINE | ID: mdl-34954112

ABSTRACT

BACKGROUND: In this study, we aimed to quantify the contribution of different transmission routes of the Middle East respiratory syndrome (MERS) and determine its transmissibility. METHODS: Based on the natural history and transmission features of MERS in different countries, a susceptible-exposed-symptomatic-asymptomatic-recovered/death (SEIARD) model and a multi-route dynamic model (MMDM). The SEIARD model and MMDM were adopted to simulate MERS in South Korea and Saudi Arabia, respectively. Data on reported MERS cases in the two countries were obtained from the World Health Organization. Thereafter, the next generation matrix method was employed to derive the equation for the basic reproduction number (R0), and the model fitting procedure was adopted to calculate the R0 values corresponding to these different countries. RESULTS: In South Korea, 'Person-to-Person' transmission was identified as the main mode of MERS transmission in healthcare settings, while in Saudi Arabia, in addition to 'Person-to-Person' transmission, 'Host-to-Host' and 'Host-to-Person' transmission also occurred under certain scenarios, with camels being the main host. Further, the fitting results showed that the SEIARD model and MMDM fitted the data well. The mean R0 value was 8.59 (95% confidence interval [CI]: 0-28.02) for MERS in South Korea, and for MERS in Saudi Arabia, it was 1.15 and 1.02 (95% CI: 0.86-1.44) for the 'Person-to-Person' and 'Camel-to-Camel' transmission routes, respectively. CONCLUSIONS: The SEIARD and MMDM model can be used to simulate the transmission of MERS in different countries. Additionally, in Saudi Arabia, the transmissibility of MERS was almost the same among hosts (camels) and humans.


Subject(s)
Coronavirus Infections , Middle East Respiratory Syndrome Coronavirus , Animals , Basic Reproduction Number , Camelus , Coronavirus Infections/epidemiology , Saudi Arabia/epidemiology , Zoonoses/epidemiology
13.
China CDC Wkly ; 3(50): 1071-1074, 2021 Dec 03.
Article in English | MEDLINE | ID: mdl-34934519

ABSTRACT

INTRODUCTION: Vaccination booster shots are completely necessary for controlling breakthrough infections of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in China. The study aims to estimate effectiveness of booster vaccines for high-risk populations (HRPs). METHODS: A vaccinated Susceptible-Exposed-Symptomatic-Asymptomatic-Recovered/Removed (SEIAR) model was developed to simulate scenarios of effective reproduction number (R eff ) from 4 to 6. Total number of infectious and asymptomatic cases were used to evaluated vaccination effectiveness. RESULTS: Our model showed that we could not prevent outbreaks when covering 80% of HRPs with booster unless R eff =4.0 or the booster vaccine had efficacy against infectivity and susceptibility of more than 90%. The results were consistent when the outcome index was confirmed cases or asymptomatic cases. CONCLUSIONS: An ideal coronavirus disease 2019 (COVID-19) booster vaccination strategy for HRPs would be expected to reach the initial goal to control the transmission of the Delta variant in China. Accordingly, the recommendation for the COVID-19 booster vaccine should be implemented in HRPs who are already vaccinated and could prevent transmission to other groups.

14.
Infect Dis Poverty ; 10(1): 140, 2021 Dec 28.
Article in English | MEDLINE | ID: mdl-34963481

ABSTRACT

BACKGROUND: Reaching optimal vaccination rates is an essential public health strategy to control the coronavirus disease 2019 (COVID-19) pandemic. This study aimed to simulate the optimal vaccination strategy to control the disease by developing an age-specific model based on the current transmission patterns of COVID-19 in Wuhan City, China. METHODS: We collected two indicators of COVID-19, including illness onset data and age of confirmed case in Wuhan City, from December 2, 2019, to March 16, 2020. The reported cases were divided into four age groups: group 1, ≤ 14 years old; group 2, 15 to 44 years old; group 3, 44 to 64 years old; and group 4, ≥ 65 years old. An age-specific susceptible-exposed-symptomatic-asymptomatic-recovered/removed model was developed to estimate the transmissibility and simulate the optimal vaccination strategy. The effective reproduction number (Reff) was used to estimate the transmission interaction in different age groups. RESULTS: A total of 47 722 new cases were reported in Wuhan City from December 2, 2019, to March 16, 2020. Before the travel ban of Wuhan City, the highest transmissibility was observed among age group 2 (Reff = 4.28), followed by group 2 to 3 (Reff = 2.61), and group 2 to 4 (Reff = 1.69). China should vaccinate at least 85% of the total population to interrupt transmission. The priority for controlling transmission should be to vaccinate 5% to 8% of individuals in age group 2 per day (ultimately vaccinated 90% of age group 2), followed by 10% of age group 3 per day (ultimately vaccinated 90% age group 3). However, the optimal vaccination strategy for reducing the disease severity identified individuals ≥ 65 years old as a priority group, followed by those 45-64 years old. CONCLUSIONS: Approximately 85% of the total population (nearly 1.2 billion people) should be vaccinated to build an immune barrier in China to safely consider removing border restrictions. Based on these results, we concluded that 90% of adults aged 15-64 years should first be vaccinated to prevent transmission in China.


Subject(s)
COVID-19 , Adolescent , Adult , Aged , China , Cities , Humans , Middle Aged , SARS-CoV-2 , Vaccination , Young Adult
15.
Front Public Health ; 9: 720953, 2021.
Article in English | MEDLINE | ID: mdl-34650949

ABSTRACT

Background: The disease burden of hepatitis E remains high. We used a new method (richness, diversity, evenness, and similarity analyses) to classify cities according to the occupational classification of hepatitis E patients across regions in China and compared the results of cluster analysis. Methods: Data on reported hepatitis E cases from 2008 to 2018 were collected from 24 cities (9 in Jilin Province, 13 in Jiangsu Province, Xiamen City, and Chuxiong Yi Autonomous Prefecture). Traditional statistical methods were used to describe the epidemiological characteristics of hepatitis E patients, while the new method and cluster analysis were used to classify the cities by analyzing the occupational composition across regions. Results: The prevalence of hepatitis E in eastern China (Jiangsu Province) was similar to that in the south (Xiamen City) and southwest of China (Chuxiong Yi Autonomous Prefecture), but higher than that in the north (Jilin Province). The age of hepatitis E patients was concentrated between 41 and 60 years, and the sex ratio ranged from 1:1.6 to 1:3.4. Farming was the most highly prevalent occupation; other sub-prevalent occupations included retirement, housework and unemployment. The incidence of occupations among migrant workers, medical staff, teachers, and students was moderate. There were several occupational types with few or no records, such as catering industry, caregivers and babysitters, diaspora children, childcare, herders, and fishing (boat) people. The occupational similarity of hepatitis E was high among economically developed cities, such as Nanjing, Wuxi, Baicheng, and Xiamen, while the similarity was small among cities with large economic disparities, such as Nanjing and Chuxiong Yi Autonomous Prefecture. A comparison of the classification results revealed more similarities and some differences when using these two methods. Conclusion: In China, the factors with the greatest influence on the prevalence of hepatitis E are living in the south, farming as an occupation, being middle-aged or elderly, and being male. The 24 cities we studied were highly diverse and moderately similar in terms of the occupational distribution of patients with hepatitis E. We confirmed the validity of the new method on in classifying cities according to their occupational composition by comparing it with the clustering method.


Subject(s)
Hepatitis E , Adult , Aged , Child , China/epidemiology , Cities/epidemiology , Cluster Analysis , Hepatitis E/diagnosis , Humans , Incidence , Male , Middle Aged
16.
China CDC Wkly ; 3(34): 716-719, 2021 Aug 20.
Article in English | MEDLINE | ID: mdl-34594975

ABSTRACT

INTRODUCTION: The coronavirus disease 2019 (COVID-19) pandemic recently affected Taiwan, China. This study aimed to calculate the transmissibility of COVID-19 to predict trends and evaluate the effects of interventions. METHODS: The data of reported COVID-19 cases was collected from April 20 to May 26, 2021, which included daily reported data (Scenario I) and reported data after adjustment (Scenario II). A susceptible-exposed-symptomatic-asymptomatic-recovered model was developed to fit the data. The effective reproductive number (Reff ) was used to estimate the transmissibility of COVID-19. RESULTS: A total of 4,854 cases were collected for the modelling. In Scenario I, the intervention has already taken some effects from May 17 to May 26 (the Reff reduced to 2.1). When the Reff was set as 0.1, the epidemic was projected to end on July 4, and a total of 1,997 cases and 855 asymptomatic individuals would have been reported. In Scenario II, the interventions were projected as having been effective from May 24 to May 26 (the Reff reduced to 0.4). When the Reff was set as 0.1, the epidemic was projected to end on July 1, and a total of 1,482 cases and 635 asymptomatic individuals would have been reported. CONCLUSION: The epidemic of COVID-19 was projected to end after at least one month, even if the most effective interventions were applied in Taiwan, China. Although there were some positive effects of intervention in Taiwan, China.

17.
Front Med (Lausanne) ; 8: 701836, 2021.
Article in English | MEDLINE | ID: mdl-34485337

ABSTRACT

Background: It is much valuable to evaluate the comparative effectiveness of the coronavirus disease 2019 (COVID-19) prevention and control in the non-pharmacological intervention phase of the pandemic across countries and identify useful experiences that could be generalized worldwide. Methods: In this study, we developed a susceptible-exposure-infectious-asymptomatic-removed (SEIAR) model to fit the daily reported COVID-19 cases in 160 countries. The time-varying reproduction number (R t ) that was estimated through fitting the mathematical model was adopted to quantify the transmissibility. We defined a synthetic index (I AC ) based on the value of R t to reflect the national capability to control COVID-19. Results: The goodness-of-fit tests showed that the SEIAR model fitted the data of the 160 countries well. At the beginning of the epidemic, the values of R t of countries in the European region were generally higher than those in other regions. Among the 160 countries included in the study, all European countries had the ability to control the COVID-19 epidemic. The Western Pacific Region did best in continuous control of the epidemic, with a total of 73.76% of countries that can continuously control the COVID-19 epidemic, while only 43.63% of the countries in the European Region continuously controlled the epidemic, followed by the Region of Americas with 52.53% of countries, the Southeast Asian Region with 48% of countries, the African Region with 46.81% of countries, and the Eastern Mediterranean Region with 40.48% of countries. Conclusion: Large variations in controlling the COVID-19 epidemic existed across countries. The world could benefit from the experience of some countries that demonstrated the highest containment capabilities.

18.
PLoS One ; 16(8): e0255908, 2021.
Article in English | MEDLINE | ID: mdl-34352011

ABSTRACT

This study aimed to investigate the spatial distribution and patterns of multimorbidity among the elderly in China. Data on the occurrence of 14 chronic diseases were collected for 9710 elderly participants in the 2015 waves of the China Health and Retirement Longitudinal Study (CHARLS). Web graph, Apriori algorithm, age-adjusted Charlson comorbidity index (AAC), and Spatial autocorrelation were used to perform the multimorbidity analysis. The multimorbidity prevalence rate was estimated as 49.64% in the elderly in China. Three major multimorbidity patterns were identified: [Asthma/Chronic lungs diseases]: (Support (S) = 6.17%, Confidence (C) = 63.77%, Lift (L) = 5.15); [Asthma, Arthritis, or rheumatism/ Chronic lungs diseases]: (S = 3.12%, C = 64.03%, L = 5.17); [Dyslipidemia, Hypertension, Arthritis or rheumatism/Heart attack]: (S = 3.96%, C = 51.56, L = 2.69). Results of the AAC analysis showed that the more chronic diseases an elderly has, the lower is the 10-year survival rate (P < 0.001). Global spatial autocorrelation showed a positive spatial correlation distribution for the prevalence of the third multimorbidity pattern in China (P = 0.032). The status of chronic diseases and multimorbidity among the elderly with a spatial correlation is a significant health issue in China.


Subject(s)
Multimorbidity , Retirement , Aged , Chronic Disease , Humans , Longitudinal Studies , Middle Aged
19.
J Viral Hepat ; 28(10): 1464-1473, 2021 10.
Article in English | MEDLINE | ID: mdl-34314082

ABSTRACT

Yichang is a city in central China in the Hubei Province. This study aimed to estimate the dynamics of the transmissibility of hepatitis C using a mathematical model and predict the transmissibility of hepatitis C in 2030. Data of hepatitis C cases from 13 counties or districts (cities) in Yichang from 2008 to 2016 were collected. A susceptible-infectious-chronic-recovered (SICR) model was developed to fit the data. The transmissibility of hepatitis C at the counties or districts was calculated based on new infections (including infected or chronically infected cases) reported monthly in the city caused by one infectious individual (MNI). The trend of the MNI was fitted and predicted using 11 models, with the coefficient of determination (R2 ) was being used to test the goodness of fit of these models. A total of 3065 cases of hepatitis C were reported in Yichang from 2008 to 2016. The median MNI of Yichang was 0.0768. According to the fitting results and analysis, the trend of transmissibility of hepatitis C in Yichang City conforms with the logarithmic (R2  = 0.918, p < 0.001):MNI = 0.265-0.108 log(t) and exponential (R2  = 0.939, p < 0.001): MNI = 0.344e(-0.278t) models. Hence, the transmission of hepatitis C virus at the county level has a downward trend. In conclusion, the transmissibility of hepatitis C in Yichang has a downward trend. With the current preventive and control measures in place, the spread of hepatitis C can be controlled.


Subject(s)
Hepacivirus , Hepatitis C , China/epidemiology , Cities , Hepatitis C/epidemiology , Humans , Models, Theoretical
20.
PLoS Negl Trop Dis ; 15(6): e0009501, 2021 06.
Article in English | MEDLINE | ID: mdl-34111124

ABSTRACT

Shigellosis is a heavy disease burden in China especially in children aged under 5 years. However, the age-related factors involved in transmission of shigellosis are unclear. An age-specific Susceptible-Exposed-Infectious/Asymptomatic-Recovered (SEIAR) model was applied to shigellosis surveillance data maintained by Hubei Province Centers for Disease Control and Prevention from 2005 to 2017. The individuals were divided into four age groups (≤ 5 years, 6-24 years, 25-59 years, and ≥ 60 years). The effective reproduction number (Reff), including infectivity (RI) and susceptibility (RS) was calculated to assess the transmissibility of different age groups. From 2005 to 2017, 130,768 shigellosis cases were reported in Hubei Province. The SEIAR model fitted well with the reported data (P < 0.001). The highest transmissibility (Reff) was from ≤ 5 years to the 25-59 years (mean: 0.76, 95% confidence interval [CI]: 0.34-1.17), followed by from the 6-24 years to the 25-59 years (mean: 0.69, 95% CI: 0.35-1.02), from the ≥ 60 years to the 25-59 years (mean: 0.58, 95% CI: 0.29-0.86), and from the 25-59 years to 25-59 years (mean: 0.50, 95% CI: 0.21-0.78). The highest infectivity was in ≤ 5 years (RI = 1.71), and was most commonly transmitted to the 25-59 years (45.11%). The highest susceptibility was in the 25-59 years (RS = 2.51), and their most common source was the ≤ 5 years (30.15%). Furthermore, "knock out" simulation predicted the greatest reduction in the number of cases occurred by when cutting off transmission routes among ≤ 5 years and from 25-59 years to ≤ 5 years. Transmission in ≤ 5 years occurred mainly within the group, but infections were most commonly introduced by individuals in the 25-59 years. Infectivity was highest in the ≤ 5 years and susceptibility was highest in the 25-59 years. Interventions to stop transmission should be directed at these age groups.


Subject(s)
Dysentery, Bacillary/epidemiology , Dysentery, Bacillary/transmission , Models, Theoretical , Adolescent , Adult , Age Factors , Child , Child, Preschool , China/epidemiology , Female , Humans , Infant , Male , Shigella/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL
...