Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Neural Netw ; 158: 89-98, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36446158

ABSTRACT

Automatic detection of retinal diseases based on deep learning technology and Ultra-widefield (UWF) images plays an important role in clinical practices in recent years. However, due to small lesions and limited data samples, it is not easy to train a detection-accurate model with strong generalization ability. In this paper, we propose a lesion attention conditional generative adversarial network (LAC-GAN) to synthesize retinal images with realistic lesion details to improve the training of the disease detection model. Specifically, the generator takes the vessel mask and class label as the conditional inputs, and processes the random Gaussian noise by a series of residual block to generate the synthetic images. To focus on pathological information, we propose a lesion feature attention mechanism based on random forest (RF) method, which constructs its reverse activation network to activate the lesion features. For discriminator, a weight-sharing multi-discriminator is designed to improve the performance of model by affine transformations. Experimental results on multi-center UWF image datasets demonstrate that the proposed method can generate retinal images with reasonable details, which helps to enhance the performance of the disease detection model.


Subject(s)
Generalization, Psychological , Image Processing, Computer-Assisted , Image Processing, Computer-Assisted/methods
2.
IEEE J Biomed Health Inform ; 26(1): 90-102, 2022 01.
Article in English | MEDLINE | ID: mdl-34061755

ABSTRACT

Due to the discrepancy of different devices for fundus image collection, a well-trained neural network is usually unsuitable for another new dataset. To solve this problem, the unsupervised domain adaptation strategy attracts a lot of attentions. In this paper, we propose an unsupervised domain adaptation method based image synthesis and feature alignment (ISFA) method to segment optic disc and cup on fundus images. The GAN-based image synthesis (IS) mechanism along with the boundary information of optic disc and cup is utilized to generate target-like query images, which serves as the intermediate latent space between source domain and target domain images to alleviate the domain shift problem. Specifically, we use content and style feature alignment (CSFA) to ensure the feature consistency among source domain images, target-like query images and target domain images. The adversarial learning is used to extract domain-invariant features for output-level feature alignment (OLFA). To enhance the representation ability of domain-invariant boundary structure information, we introduce the edge attention module (EAM) for low-level feature maps. Eventually, we train our proposed method on the training set of the REFUGE challenge dataset and test it on Drishti-GS and RIM-ONE_r3 datasets. On the Drishti-GS dataset, our method achieves about 3% improvement of Dice on optic cup segmentation over the next best method. We comprehensively discuss the robustness of our method for small dataset domain adaptation. The experimental results also demonstrate the effectiveness of our method. Our code is available at https://github.com/thinkobj/ISFA.


Subject(s)
Glaucoma , Optic Disk , Fundus Oculi , Humans , Image Processing, Computer-Assisted , Neural Networks, Computer , Optic Disk/diagnostic imaging
SELECTION OF CITATIONS
SEARCH DETAIL
...