Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Nano ; 16(4): 5515-5528, 2022 Apr 26.
Article in English | MEDLINE | ID: mdl-35352555

ABSTRACT

Nearly half of pregnancies worldwide are unintended mainly due to failure of contraception, resulting in negative effects on women's health. Male contraception techniques, primarily condoms and vasectomy, play a crucial role in birth control, but cannot be both highly effective and reversible at the same time. Herein, an ultrasound (US)-induced self-clearance hydrogel capable of real-time monitoring is utilized for in situ injection into the vas deferens, enabling effective contraception and noninvasive recanalization whenever needed. The hydrogel is composed of (i) sodium alginate (SA) conjugated with reactive oxygen species (ROS)-cleavable thioketal (SA-tK), (ii) titanium dioxide (TiO2), which can generate a specific level of ROS after US treatment, and (iii) calcium chloride (CaCl2), which triggers the formation of the hydrogel. For contraception, the above mixture agents are one-time injected into the vas deferens, which can transform from liquid to hydrogel within 160 s, thereby significantly physically blocking the vas deferens and inhibiting movability of sperm. When fertility is needed, a noninvasive remedial ultrasound can make TiO2 generate ROS, which cleaves SA-tK to destroy the network of the hydrogel. Owing to the recanalization, the refertility rate is restored to 100%. Meanwhile, diagnostic ultrasound (D-US, 22 MHz) can monitor the occlusion and recanalization process in real-time. In summary, the proposed hydrogel contraception can be a reliable, safe, and reversible male contraceptive strategy that addresses an unmet need for men to control their fertility.


Subject(s)
Hydrogels , Semen , Pregnancy , Male , Female , Humans , Reactive Oxygen Species , Contraception/methods , Ultrasonography
2.
ACS Nano ; 14(1): 927-936, 2020 01 28.
Article in English | MEDLINE | ID: mdl-31927974

ABSTRACT

Image-guided surgery plays a crucial role in realizing complete tumor removal, reducing postoperative recurrence and increasing patient survival. However, imaging of tumor lesion in the typical metabolic organs, e.g., kidney and liver, still has great challenges due to the intrinsic nonspecific accumulation of imaging probes in those organs. Herein, we report an in situ self-assembled near-infrared (NIR) peptide probe with tumor-specific excretion-retarded (TER) effect in tumor lesions, enabling high-performance imaging of human renal cell carcinoma (RCC) and achieving complete tumor removal, ultimately reducing postoperative recurrence. The NIR peptide probe first specifically recognizes αvß3 integrin overexpressed in renal cancer cells, then is cleaved by MMP-2/9, which is up-regulated in the tumor microenvironment. The probe residue spontaneously self-assembles into nanofibers that exhibit an excretion-retarded effect in the kidney, which contributes to a high signal-to-noise (S/N) ratio in orthotopic RCC mice. Intriguingly, the TER effect also enables precisely identifying eye-invisible tiny lesions (<1 mm), which contributes to complete tumor removal and significantly reduces the postoperative recurrence compared with traditional surgery. Finally, the TER strategy is successfully employed in high-performance identification of human RCC in an ex vivo kidney perfusion model. Taken together, this NIR peptide probe based on the TER strategy is a promising method for detecting tumors in metabolic organs in diverse biomedical applications.


Subject(s)
Carcinoma, Renal Cell/surgery , Fluorescent Dyes/chemistry , Kidney Neoplasms/surgery , Peptides/chemistry , Surgery, Computer-Assisted , Animals , Carcinoma, Renal Cell/diagnostic imaging , Cell Line, Tumor , Cell Survival , Female , Fluorescent Dyes/chemical synthesis , Humans , Infrared Rays , Kidney Neoplasms/diagnostic imaging , Mice , Mice, Inbred BALB C , Mice, Nude , Optical Imaging , Particle Size , Peptides/chemical synthesis , Signal-To-Noise Ratio , Surface Properties
3.
Eur J Med Chem ; 157: 1192-1201, 2018 Sep 05.
Article in English | MEDLINE | ID: mdl-30193217

ABSTRACT

In a previous study, we synthesized endocyclic enone jasmonate derivatives that function as anti-inflammatory and PPAR-γ-activating entities by using key functional moieties of anti-inflammatory algal metabolites. Herein, we designed additional derivatives containing an exocyclic enone moiety that resembles the key structure of the natural PPAR-γ ligand, 15-deoxy-Δ12, 14-prostaglandin J2 (15 d-PGJ2). The exocyclic enone moiety of 15 d-PGJ2 is essential for covalent bonding with the Cys285 residue in the PPAR-γ ligand-binding domain (LBD). In silico analysis of the designed compounds indicated that they may form hydrogen bonds with key amino acid residues in the PPAR-γ LBD, and thus, secure a position in the bioactive cavity in a similar fashion as does rosiglitazone and 15 d-PGJ2. By a luciferase reporter assay on rat liver Ac2F cells, the synthesized compounds were evaluated for PPAR-γ transcriptional activity. The differential PPAR-γ transcriptional activities of the geometric and enantiomeric isomers of the selected analog were also evaluated; based on our results, the enantiopure compound (+)-(R,E)-6a1 was suggested as a potential PPAR-γ ligand.


Subject(s)
Drug Design , PPAR gamma/agonists , Prostaglandin D2/analogs & derivatives , Animals , Cells, Cultured , Dose-Response Relationship, Drug , Ligands , Models, Molecular , Molecular Structure , Prostaglandin D2/chemical synthesis , Prostaglandin D2/chemistry , Prostaglandin D2/pharmacology , Rats , Structure-Activity Relationship
4.
Cell Prolif ; 51(5): e12480, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30069943

ABSTRACT

OBJECTIVES: Colorectal cancer is one of the most common malignancies both in men and women. Owing to metastasis and resistance, the prognosis of colorectal cancerCRC patients remains extremely poor with chemotherapy. A disintegrin and metalloproteinase 17 (ADAM17) induces the activation of Notch pathway and contributes to the chemoresistance. This study aimed to discover a novel ADAM17 inhibitor and investigate the chemosensitization effect. MATERIALS AND METHODS: Pharmacophore model, western blot and enzymatic assay were used to discover ZLDI-8. Cell proliferation was determined by MTT and colony formation assay. Cell migratory and invasive ability were determined by wound healing scratch and transwell assay. Immunofluorescence images and western blot analysed the expression of Notch or epithelial-mesenchymal transition (EMT) pathway markers. Xenografts were employed to evaluate the chemosensitization effect of ZLDI-8 in vivo. RESULTS: We found that ZLDI-8 cell-specifically inhibited the proliferation of CRC, and this effect was due to abrogation of ADAM17 and Notch pathway. Meanwhile, we reported for the first time that ZLDI-8 synergistically improved the anti-tumour and anti-metastasis activity of 5-fluorouracil or irinotecan by reversing Notch and EMT pathways. Interestingly, in vivo studies further demonstrated that ZLDI-8 promoted the anti-tumour effect of 5-fluorouracil through Notch and EMT reversal. CONCLUSIONS: A novel ADAM17 inhibitor ZLDI-8 may be a potential chemosensitizer which sensitized CRC cells to 5-fluorouracil or irinotecan by reversing Notch and EMT pathways.


Subject(s)
ADAM17 Protein/antagonists & inhibitors , Antineoplastic Agents/pharmacology , Colorectal Neoplasms/drug therapy , Epithelial-Mesenchymal Transition/drug effects , Fluorouracil/pharmacology , Receptors, Notch/metabolism , A549 Cells , Camptothecin/analogs & derivatives , Camptothecin/pharmacology , Cell Line, Tumor , Cell Movement/drug effects , Cell Proliferation/drug effects , Colorectal Neoplasms/metabolism , HeLa Cells , Hep G2 Cells , Humans , Irinotecan , MCF-7 Cells , Signal Transduction/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...