Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
Add more filters










Publication year range
1.
J Am Chem Soc ; 146(21): 14754-14764, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38754363

ABSTRACT

Lithium-sulfur (Li-S) batteries are highly considered as next-generation energy storage techniques. Weakly solvating electrolyte with low lithium polysulfide (LiPS) solvating power promises Li anode protection and improved cycling stability. However, the cathodic LiPS kinetics is inevitably deteriorated, resulting in severe cathodic polarization and limited energy density. Herein, the LiPS kinetic degradation mechanism in weakly solvating electrolytes is disclosed to construct high-energy-density Li-S batteries. Activation polarization instead of concentration or ohmic polarization is identified as the dominant kinetic limitation, which originates from higher charge-transfer activation energy and a changed rate-determining step. To solve the kinetic issue, a titanium nitride (TiN) electrocatalyst is introduced and corresponding Li-S batteries exhibit reduced polarization, prolonged cycling lifespan, and high actual energy density of 381 Wh kg-1 in 2.5 Ah-level pouch cells. This work clarifies the LiPS reaction mechanism in protective weakly solvating electrolytes and highlights the electrocatalytic regulation strategy toward high-energy-density and long-cycling Li-S batteries.

2.
J Am Chem Soc ; 145(50): 27531-27538, 2023 Dec 20.
Article in English | MEDLINE | ID: mdl-38054906

ABSTRACT

Single-atom catalysts exhibit promising electrocatalytic activity, a trait that can be further enhanced through the introduction of heteroatom doping within the carbon skeleton. Nonetheless, the intricate relationship between the doping positions and activity remains incompletely elucidated. This contribution sheds light on an inductive effect of single-atom sites, showcasing that the activity of the oxygen reduction reaction (ORR) can be augmented by reducing the spatial gap between the doped heteroatom and the single-atom sites. Drawing inspiration from this inductive effect, we propose a synthesis strategy involving ligand modification aimed at precisely adjusting the distance between dopants and single-atom sites. This precise synthesis leads to optimized electrocatalytic activity for the ORR. The resultant electrocatalyst, characterized by Fe-N3P1 single-atom sites, demonstrates remarkable ORR activity, thus exhibiting great potential in zinc-air batteries and fuel cells.

3.
Angew Chem Int Ed Engl ; 62(48): e202313028, 2023 Nov 27.
Article in English | MEDLINE | ID: mdl-37851474

ABSTRACT

Coordination engineering for single-atom sites has drawn increasing attention, yet its chemical synthesis remains a tough issue, especially for tailorable coordination structures. Herein, a molecular recognition strategy is proposed to fabricate single-atom sites with regulable local coordination structures. Specifically, a heteroatom-containing ligand serves as the guest molecule to induce coordination interaction with the metal-containing host, precisely settling the heteroatoms into the local structure of single-atom sites. As a proof of concept, thiophene is selected as the guest molecule, and sulfur atoms are successfully introduced into the local coordination structure of iron single-atom sites. Ultrahigh oxygen reduction electrocatalytic activity is achieved with a half-wave potential of 0.93 V versus reversible hydrogen electrode. Furthermore, the strategy possesses excellent universality towards diversified types of single-atom sites. This work makes breakthroughs in the fabrication of single-atom sites and affords new opportunities in structural regulation at the atomic level.

4.
Adv Mater ; 35(14): e2211022, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36739474

ABSTRACT

Atomic Fe in N-doped carbon (FeNC) electrocatalysts for oxygen (O2 ) reduction at the cathode of proton exchange membrane fuel cells are the most promising alternative to platinum-group-metal catalysts. Despite recent progress on atomic FeNC O2  reduction, their controlled synthesis and stability for practical applications remain challenging. A two-step synthesis approach has recently led to significant advances in terms of Fe-loading and mass activity; however, the Fe utilization remains low owing to the difficulty of building scaffolds with sufficient porosity that electrochemically exposes the active sites. Herein, this issue is addressed by coordinating Fe in a highly porous nitrogen-doped carbon support (≈3295 m2  g-1 ), prepared by pyrolysis of inexpensive 2,4,6-triaminopyrimidine and a Mg2+ salt active site template and porogen. Upon Fe coordination, a high electrochemical active site density of 2.54 × 1019  sites gFeNC -1  and a record 52% FeNx electrochemical utilization based on in situ nitrite stripping are achieved. The Fe single atoms are characterized pre- and post-electrochemical accelerated stress testing by aberration-corrected high-angle annular dark field scanning transmission electron microscopy, showing no Fe clustering. Moreover, ex situ X-ray absorption spectroscopy and low-temperature Mössbauer spectroscopy suggest the presence of penta-coordinated Fe sites, which are further studied by density functional theory calculations.

5.
J Am Chem Soc ; 144(32): 14638-14646, 2022 Aug 17.
Article in English | MEDLINE | ID: mdl-35791913

ABSTRACT

Lithium-sulfur (Li-S) batteries have great potential as high-energy-density energy storage devices. Electrocatalysts are widely adopted to accelerate the cathodic sulfur redox kinetics. The interactions among the electrocatalysts, solvents, and lithium salts significantly determine the actual performance of working Li-S batteries. Herein, lithium bis(trifluoromethanesulfonyl)imide (LiTFSI), a commonly used lithium salt, is identified to aggravate surface gelation on the MoS2 electrocatalyst. In detail, the trifluoromethanesulfonyl group in LiTFSI interacts with the Lewis acidic sites on the MoS2 electrocatalyst to generate an electron-deficient center. The electron-deficient center with high Lewis acidity triggers cationic polymerization of the 1,3-dioxolane solvent and generates a surface gel layer that reduces the electrocatalytic activity. To address the above issue, Lewis basic salt lithium iodide (LiI) is introduced to block the interaction between LiTFSI and MoS2 and inhibit the surface gelation. Consequently, the Li-S batteries with the MoS2 electrocatalyst and the LiI additive realize an ultrahigh actual energy density of 416 W h kg-1 at the pouch cell level. This work affords an effective lithium salt to boost the electrocatalytic activity in practical working Li-S batteries and deepens the fundamental understanding of the interactions among electrocatalysts, solvents, and salts in energy storage systems.

6.
Angew Chem Int Ed Engl ; 61(33): e202208042, 2022 Aug 15.
Article in English | MEDLINE | ID: mdl-35679060

ABSTRACT

Aqueous zinc-air batteries possess inherent safety and are especially commendable facing high-temperature working conditions. However, their working feasibility at high temperatures has seldom been investigated. Herein, the working feasibility of high-temperature zinc-air batteries is systemically investigated. The effects of temperature on air cathode, zinc anode, and aqueous electrolyte are decoupled to identify the favorable and unfavorable factors. Specifically, parasitic hydrogen evolution reaction strengthens at high temperatures and leads to declined anode Faraday efficiency, which is identified as the main bottleneck. Moreover, zinc-air batteries demonstrate cycling feasibility at 80 °C. This work reveals the potential of zinc-air batteries to satisfy energy storage at high temperatures and guides further development of advanced batteries towards harsh working conditions.

7.
Sci Adv ; 8(11): eabn5091, 2022 Mar 18.
Article in English | MEDLINE | ID: mdl-35294235

ABSTRACT

Rechargeable zinc-air batteries call for high-performance bifunctional oxygen electrocatalysts. Transition metal single-atom catalysts constitute a promising candidate considering their maximum atom efficiency and high intrinsic activity. However, the fabrication of atomically dispersed transition metal sites is highly challenging, creating a need for for new design strategies and synthesis methods. Here, a clicking confinement strategy is proposed to efficiently predisperse transitional metal atoms in a precursor directed by click chemistry and ensure successful construction of abundant single-atom sites. Concretely, cobalt-coordinated porphyrin units are covalently clicked on the substrate for the confinement of the cobalt atoms and affording a Co-N-C electrocatalyst. The Co-N-C electrocatalyst exhibits impressive bifunctional oxygen electrocatalytic performances with an activity indicator ΔE of 0.79 V. This work extends the approach to prepare transition metal single-atom sites for efficient bifunctional oxygen electrocatalysis and inspires the methodology on precise synthesis of catalytic materials.

8.
Adv Mater ; 34(11): e2109407, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34989032

ABSTRACT

Rechargeable zinc-air batteries afford great potential toward next-generation sustainable energy storage. Nevertheless, the oxygen redox reactions at the air cathode are highly sluggish in kinetics to induce poor energy efficiency and limited cycling lifespan. Air cathodes with asymmetric configurations significantly promote the electrocatalytic efficiency of the loaded electrocatalysts, whereas rational synthetic methodology to effectively fabricate asymmetric air cathodes remains insufficient. Herein, a strategy of asymmetric interface preconstruction is proposed to fabricate asymmetric air cathodes for high-performance rechargeable zinc-air batteries. Concretely, the asymmetric interface is preconstructed by introducing immiscible organic-water diphases within the air cathode, at which the electrocatalysts are in situ formed to achieve an asymmetric configuration. The as-fabricated asymmetric air cathodes realize high working rates of 50 mA cm-2 , long cycling stability of 3400 cycles at 10 mA cm-2 , and over 100 cycles under harsh conditions of 25 mA cm-2 and 25 mAh cm-2 . Moreover, the asymmetric interface preconstruction strategy is universal to many electrocatalytic systems and can be easily scaled up. This work provides an effective strategy toward advanced asymmetric air cathodes with high electrocatalytic efficiency and significantly promotes the performance of rechargeable zinc-air batteries.

9.
Angew Chem Int Ed Engl ; 61(7): e202114671, 2022 Feb 07.
Article in English | MEDLINE | ID: mdl-34889012

ABSTRACT

Lithium-sulfur (Li-S) batteries are deemed as future energy storage devices due to ultrahigh theoretical energy density. Cathodic polysulfide electrocatalysts have been widely investigated to promote sluggish sulfur redox kinetics. Probing the surface structure of electrocatalysts is vital to understanding the mechanism of polysulfide electrocatalysis. In this work, we for the first time identify surface gelation on disulfide electrocatalysts. Concretely, the Lewis acid sites on disulfides trigger the ring-opening polymerization of the dioxolane solvent to generate a surface gel layer, covering disulfides and reducing the electrocatalytic activity. Accordingly, a Lewis base triethylamine (TEA) is introduced as a competitive inhibitor. Consequently, Li-S batteries with disulfide electrocatalysts and TEA afford high specific capacity and improved rate responses. This work affords new insights on the actual surface structure of electrocatalysts in Li-S batteries.

10.
J Am Chem Soc ; 143(47): 19865-19872, 2021 Dec 01.
Article in English | MEDLINE | ID: mdl-34761937

ABSTRACT

Lithium-sulfur (Li-S) batteries constitute promising next-generation energy storage devices due to the ultrahigh theoretical energy density of 2600 Wh kg-1. However, the multiphase sulfur redox reactions with sophisticated homogeneous and heterogeneous electrochemical processes are sluggish in kinetics, thus requiring targeted and high-efficient electrocatalysts. Herein, a semi-immobilized molecular electrocatalyst is designed to tailor the characters of the sulfur redox reactions in working Li-S batteries. Specifically, porphyrin active sites are covalently grafted onto conductive and flexible polypyrrole linkers on graphene current collectors. The electrocatalyst with the semi-immobilized active sites exhibits homogeneous and heterogeneous functions simultaneously, performing enhanced redox kinetics and a regulated phase transition mode. The efficiency of the semi-immobilizing strategy is further verified in practical Li-S batteries that realize superior rate performances and long lifespan as well as a 343 Wh kg-1 high-energy-density Li-S pouch cell. This contribution not only proposes an efficient semi-immobilizing electrocatalyst design strategy to promote the Li-S battery performances but also inspires electrocatalyst development facing analogous multiphase electrochemical energy processes.

11.
Chem Soc Rev ; 50(13): 7745-7778, 2021 Jul 05.
Article in English | MEDLINE | ID: mdl-34017967

ABSTRACT

Oxygen reduction and evolution reactions constitute the core process of many vital energy storage or conversion techniques. However, the kinetic sluggishness of the oxygen redox reactions and heavy reliance on noble-metal-based electrocatalysts strongly limit the energy efficiency of the related devices. Developing high-performance noble-metal-free bifunctional ORR and OER electrocatalysts has gained worldwide attention, where much important progress has been made during the last decade. This review systematically addresses the design principles to obtain high-performance noble-metal-free bifunctional oxygen electrocatalysts by emphasizing strategies of both intrinsic activity regulation and active site integration. A statistical analysis of the reported bifunctional electrocatalysts is further carried out to reveal the composition-performance relationship and guide further exploration of emerging candidates. Finally, perspectives for developing advanced bifunctional oxygen electrocatalysts and aqueous rechargeable metal-air batteries are proposed.

12.
Angew Chem Int Ed Engl ; 60(28): 15281-15285, 2021 Jul 05.
Article in English | MEDLINE | ID: mdl-33938631

ABSTRACT

Efficient energy storage at low temperatures starves for competent battery techniques. Herein, inherent advantages of zinc-air batteries on low-temperature electrochemical energy storage are discovered. The electrode reactions are resistive against low temperatures to render feasible working zinc-air batteries under sub-zero temperatures. The relatively reduced ionic conductivity of electrolyte is identified as the main limiting factor, which can be addressed by employing a CsOH-based electrolyte through regulating the solvation structures. Accordingly, 500 cycles with a stable voltage gap of 0.8 V at 5.0 mA cm-2 is achieved at -10 °C. This work reveals the promising potential of zinc-air batteries for low-temperature electrochemical energy storage and inspires advanced battery systems under extreme working conditions.

13.
Adv Mater ; 33(15): e2008606, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33656780

ABSTRACT

Rechargeable zinc-air batteries constitute promising next-generation energy storage devices due to their intrinsic safety, low cost, and feasibility to realize high cycling current density and long cycling lifespan. Nevertheless, their cathodic reactions involving oxygen reduction and oxygen evolution are highly sluggish in kinetics, requiring high-performance noble-metal-free bifunctional electrocatalysts that exceed the current noble-metal-based benchmarks. Herein, a noble-metal-free bifunctional electrocatalyst is fabricated, which demonstrates ultrahigh bifunctional activity and renders excellent performance in rechargeable zinc-air batteries. Concretely, atomic Co-N-C and NiFe layered double hydroxides (LDHs) are respectively selected as oxygen reduction and evolution active sites and are further rationally integrated to afford the resultant CoNC@LDH composite electrocatalyst. The CoNC@LDH electrocatalyst exhibits remarkable bifunctional activity delivering an indicator ΔE of 0.63 V, far exceeding the noble-metal-based Pt/C+Ir/C benchmark (ΔE = 0.77 V) and most reported electrocatalysts. Correspondingly, ultralong lifespan (over 3600 cycles at 10 mA cm-2 ) and excellent rate performances (cycling current density at 100 mA cm-2 ) are achieved in rechargeable zinc-air batteries. This work highlights the current advances of bifunctional oxygen electrocatalysis and endows high-rate and long-cycling rechargeable zinc-air batteries for efficient sustainable energy storage.

14.
Angew Chem Int Ed Engl ; 60(9): 4448-4463, 2021 Feb 23.
Article in English | MEDLINE | ID: mdl-32315106

ABSTRACT

Single-atom catalysts (SACs) with highly active sites atomically dispersed on substrates exhibit unique advantages regarding maximum atomic efficiency, abundant chemical structures, and extraordinary catalytic performances for multiple important reactions. In particular, M-N-C SACs (M=transition metal atom) demonstrate optimal electrocatalytic activity for the oxygen reduction reaction (ORR) and have attracted extensive attention recently. Despite substantial efforts in fabricating various M-N-C SACs, the principles for regulating the intrinsic electrocatalytic activity of their active sites have not been sufficiently studied. In this Review, we summarize the regulation strategies for promoting the intrinsic electrocatalytic ORR activity of M-N-C SACs by modulation of the center metal atoms, the coordinated atoms, the environmental atoms, and the guest groups. Theoretical calculations and experimental investigations are both included to afford a comprehensive understanding of the structure-performance relationship. Finally, future directions of developing advanced M-N-C SACs for electrocatalytic ORR and other analogous reactions are proposed.

15.
Adv Mater ; 32(12): e1908488, 2020 Mar.
Article in English | MEDLINE | ID: mdl-32072701

ABSTRACT

The rechargeable zinc-air battery (ZAB) is a promising energy storage technology owing to its high energy density and safe aqueous electrolyte, but there is a significant performance bottleneck. Generally, cathode reactions only occur at multiphase interfaces, where the electrocatalytic active sites can participate in redox reactions effectively. In the conventional air cathode, the 2D multiphase interface on the surface of the gas diffusion layer (GDL) inevitably results in an insufficient amount of active sites and poor interfacial contact, leading to sluggish reaction kinetics. To address this problem, a 3D multiphase interface strategy is proposed to extend the reactive interface into the interior of the GDL. Based on this concept, an asymmetric air cathode is designed to increase the accessible active sites, accelerate mass transfer, and generate a dynamically stabilized reactive interface. With a NiFe layered-double-hydroxide electrocatalyst, ZABs based on the asymmetric cathode deliver a small charge/discharge voltage gap (0.81 V at 5.0 mA cm-2 ), a high power density, and a stable cyclability (over 2000 cycles). This 3D reactive interface strategy provides a feasible method for enhancing the air cathode kinetics and further enlightens electrode designs for energy devices involving multiphase electrochemical reactions.

16.
ChemSusChem ; 13(6): 1529-1536, 2020 Mar 20.
Article in English | MEDLINE | ID: mdl-31845530

ABSTRACT

Rechargeable zinc-air batteries are considered as next-generation energy storage devices because of their ultrahigh theoretical energy density of 1086 Wh kg-1 (including oxygen) and inherent safety originating from the use of aqueous electrolyte. However, the cathode processes regarding oxygen reduction and evolution are sluggish in terms of kinetics, which severely limit the practical battery performances. Developing high-performance bifunctional oxygen electrocatalysts is of great significance, yet to achieve better bifunctional electrocatalytic reactivity beyond the state-of-the-art noble-metal-based electrocatalysts remains a great challenge. Herein, a composite Co3 O4 @POF (POF=framework porphyrin) bifunctional oxygen electrocatalyst is proposed to construct advanced air cathodes for high-performance rechargeable zinc-air batteries. The as-obtained composite Co3 O4 @POF electrocatalyst exhibits a bifunctional electrocatalytic reactivity of ΔE=0.74 V, which is better than the noble-metal-based Pt/C+Ir/C electrocatalyst and most of the reported bifunctional ORR/OER electrocatalysts. When applied in rechargeable zinc-air batteries, the Co3 O4 @POF cathode exhibits a reduced discharge-charge voltage gap of 1.0 V at 5.0 mA cm-2 , high power density of 222.2 mW cm-2 , and impressive cycling stability for more than 2000 cycles at 5.0 mA cm-2 .

17.
Angew Chem Int Ed Engl ; 59(27): 10732-10745, 2020 Jun 26.
Article in English | MEDLINE | ID: mdl-31746521

ABSTRACT

Lithium-sulfur (Li-S) batteries are highly regarded as the next-generation energy-storage devices because of their ultrahigh theoretical energy density of 2600 Wh kg-1 . Sulfurized polyacrylonitrile (SPAN) is considered a promising sulfur cathode to substitute carbon/sulfur (C/S) composites to afford higher Coulombic efficiency, improved cycling stability, and potential high-energy-density Li-SPAN batteries. However, the instability of the Li-metal anode threatens the performances of Li-SPAN batteries bringing limited lifespan and safety hazards. Li-metal can react with most kinds of electrolyte to generate a protective solid electrolyte interphase (SEI), electrolyte regulation is a widely accepted strategy to protect Li-metal anodes in rechargeable batteries. Herein, the basic principles and current challenges of Li-SPAN batteries are addressed. Recent advances on electrolyte regulation towards stable Li-metal anodes in Li-SPAN batteries are summarized to suggest design strategies of solvents, lithium salts, additives, and gel electrolyte. Finally, prospects for future electrolyte design and Li anode protection in Li-SPAN batteries are discussed.

18.
Research (Wash D C) ; 2019: 4608940, 2019.
Article in English | MEDLINE | ID: mdl-31549064

ABSTRACT

Lithium metal constitutes promising anode materials but suffers from dendrite growth. Lithiophilic host materials are highly considered for achieving uniform lithium deposition. Precise construction of lithiophilic sites with desired structure and homogeneous distribution significantly promotes the lithiophilicity of lithium hosts but remains a great challenge. In this contribution, a framework porphyrin (POF) material with precisely constructed lithiophilic sites in regard to chemical structure and geometric position is employed as the lithium host to address the above issues for dendrite-free lithium metal anodes. The extraordinary lithiophilicity of POF even beyond lithium nuclei validated by DFT simulations and lithium nucleation overpotentials affords a novel mechanism of favorable lithium nucleation to facilitate uniform nucleation and inhibit dendrite growth. Consequently, POF-based anodes demonstrate superior electrochemical performances with high Coulombic efficiency over 98%, reduced average voltage hysteresis, and excellent stability for 300 cycles at 1.0 mA cm-2, 1.0 mAh cm-2 superior to both Cu and graphene anodes. The favorable lithium nucleation mechanism on POF materials inspires further investigation of lithiophilic electrochemistry and development of lithium metal batteries.

20.
Adv Mater ; 31(35): e1808173, 2019 Aug.
Article in English | MEDLINE | ID: mdl-30968470

ABSTRACT

Hydrogen peroxide (H2 O2 ) is a green oxidizer widely involved in a vast number of chemical reactions. Electrochemical reduction of oxygen to H2 O2 constitutes an environmentally friendly synthetic route. However, the oxygen reduction reaction (ORR) is kinetically sluggish and undesired water serves as the main product on most electrocatalysts. Therefore, electrocatalysts with high reactivity and selectivity are highly required for H2 O2 electrosynthesis. In this work, a synergistic strategy is proposed for the preparation of H2 O2 electrocatalysts with high ORR reactivity and high H2 O2 selectivity. A Co-Nx -C site and oxygen functional group comodified carbon-based electrocatalyst (named as Co-POC-O) is synthesized. The Co-POC-O electrocatalyst exhibits excellent catalytic performance for H2 O2 electrosynthesis in O2 -saturated 0.10 m KOH with a high selectivity over 80% as well as very high reactivity with an ORR potential at 1 mA cm-2 of 0.79 V versus the reversible hydrogen electrode (RHE). Further mechanism study identifies that the Co-Nx -C sites and oxygen functional groups contribute to the reactivity and selectivity for H2 O2 electrogeneration, respectively. This work affords not only an emerging strategy to design H2 O2 electrosynthesis catalysts with remarkable performance, but also the principles of rational combination of multiple active sites for green and sustainable synthesis of chemicals through electrochemical processes.

SELECTION OF CITATIONS
SEARCH DETAIL
...